Pregunta
upstudy study bank question image url

Solve the system of equations \( -6 x-4 y=10 \) and \( -5 x-2 y=-5 \) by combining the equations. \( \begin{array}{r}(-6 x-4 y=10) \\ (-5 x-2 y=-5) \\ -6 x-4 y=10 \\ -5 x-2 y=-5 \\ \hline 5 x+y=10\end{array} \)

Ask by Vaughn Weber. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution is \( x = 5 \) and \( y = -10 \).

Solución

Solve the system of equations \( -6x-4y=10;-5x-2y=-5 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}-6x-4y=10\\-5x-2y=-5\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=-\frac{5+2y}{3}\\-5x-2y=-5\end{array}\right.\) - step2: Substitute the value of \(x:\) \(-5\left(-\frac{5+2y}{3}\right)-2y=-5\) - step3: Multiply the terms: \(\frac{5\left(5+2y\right)}{3}-2y=-5\) - step4: Multiply both sides of the equation by LCD: \(\left(\frac{5\left(5+2y\right)}{3}-2y\right)\times 3=-5\times 3\) - step5: Simplify the equation: \(25+4y=-15\) - step6: Move the constant to the right side: \(4y=-15-25\) - step7: Subtract the numbers: \(4y=-40\) - step8: Divide both sides: \(\frac{4y}{4}=\frac{-40}{4}\) - step9: Divide the numbers: \(y=-10\) - step10: Substitute the value of \(y:\) \(x=-\frac{5+2\left(-10\right)}{3}\) - step11: Simplify: \(x=5\) - step12: Calculate: \(\left\{ \begin{array}{l}x=5\\y=-10\end{array}\right.\) - step13: Check the solution: \(\left\{ \begin{array}{l}x=5\\y=-10\end{array}\right.\) - step14: Rewrite: \(\left(x,y\right) = \left(5,-10\right)\) The solution to the system of equations \( -6x-4y=10 \) and \( -5x-2y=-5 \) is \( (x,y) = (5,-10) \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the system of equations \( -6 x - 4 y = 10 \) and \( -5 x - 2 y = -5 \) by combining them, we first want to manipulate them so that we can eliminate one variable. Let's rewrite the equations clearly: 1. \( -6x - 4y = 10 \) (Equation 1) 2. \( -5x - 2y = -5 \) (Equation 2) Next, we can multiply Equation 2 by 2 to align the coefficients of \(y\): \[ -10x - 4y = -10 \tag{Equation 3} \] Now we have our equations: 1. \( -6x - 4y = 10 \) 2. \( -10x - 4y = -10 \) Next, we can subtract Equation 1 from Equation 3: \[ (-10x - 4y) - (-6x - 4y) = -10 - 10 \] This simplifies to: \[ -10x + 6x = -20 \] \[ -4x = -20 \] \[ x = 5 \] Now that we have \(x\), let's substitute \(x = 5\) back into Equation 1 to find \(y\): \[ -6(5) - 4y = 10 \] \[ -30 - 4y = 10 \] \[ -4y = 10 + 30 \] \[ -4y = 40 \] \[ y = -10 \] Thus, the solution to the system of equations is \( x = 5 \) and \( y = -10 \). So, the answer can be summarized as: \[ (x, y) = (5, -10) \] Feel free to ask if you need further clarification or assistance with methods!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad