\( \begin{array}{ll}\text { a) } a b+c b+a d+c d & \text { b) } x k+y k-x m-y m \\ \text { c) } a k-b k-a m+b m & \text { d) } x k-y k+x m-y m \\ \text { e) } b y-c y-b+c & \text { () } 3 p x-3 p y-x+y \\ \text { g) } a-b-a c+b c & \text { h) } x^{2}+x(3+y)+3 y\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
Combining like terms can sometimes feel like you're trying to solve a puzzle! For example, in expression (h), you can simplify it by distributing the \(x\) into the parenthesis, transforming it into \(x^2 + 3x + xy + 3y\). This transformation not only reduces the expression but also showcases the beauty of algebraic manipulation! Think of algebra like organizing your closet: everything has its place! When simplifying expressions, be mindful of common mistakes such as forgetting to combine like terms. For instance, in expression (g), ensure you group all terms with \(a\), \(b\), and \(c\) appropriately. Clear organization helps avoid confusion and leads to a neater, more readable result!