\( \sum _ { k = 1 } ^ { m } 5 ( 3 ) ^ { k - 1 } = 65 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Let’s dive into this exciting geometric series! The equation you've got is of the form \( \sum_{k=1}^{m} ar^{k-1} \) where \( a = 5 \) and \( r = 3 \). The formula for the sum of a geometric series is \( S_m = a \frac{1 - r^m}{1 - r} \). Plug in your values, and you'll find the sum simplifies beautifully to give us \( 5 \frac{1 - 3^m}{1 - 3} = 65 \). Now, let's solve for \( m \). Rearranging and simplifying gives us \( 5(3^m - 1) = 130 \), leading to \( 3^m - 1 = 26 \), hence \( 3^m = 27 \), which means \( m = 3 \). Voilà! It's like solving a puzzle, and you just found the missing piece. How cool is that?