Pregunta
upstudy study bank question image url

\( \sum _ { n = 1 } ^ { \infty } ( \frac { 3 } { 5 } ) ^ { n } + \sum _ { n = 2 } ^ { 20 } ( \frac { 3 } { 5 } ) ^ { n } \)

Ask by O'Quinn Sullivan. in South Africa
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The value of the expression is approximately 2.4.

Solución

Let's evaluate the expression: \[ \sum_{n=1}^{\infty} \left(\frac{3}{5}\right)^n + \sum_{n=2}^{20} \left(\frac{3}{5}\right)^n \] ### 1. Evaluating the Infinite Geometric Series The first sum is an infinite geometric series: \[ \sum_{n=1}^{\infty} \left(\frac{3}{5}\right)^n \] The formula for the sum of an infinite geometric series \( \sum_{n=0}^{\infty} ar^n \) is: \[ \frac{a}{1 - r} \] where \( |r| < 1 \). For our series: - \( a = \left(\frac{3}{5}\right)^1 = \frac{3}{5} \) - \( r = \frac{3}{5} \) Thus, \[ \sum_{n=1}^{\infty} \left(\frac{3}{5}\right)^n = \frac{\frac{3}{5}}{1 - \frac{3}{5}} = \frac{\frac{3}{5}}{\frac{2}{5}} = \frac{3}{2} = 1.5 \] ### 2. Evaluating the Finite Geometric Series The second sum is a finite geometric series: \[ \sum_{n=2}^{20} \left(\frac{3}{5}\right)^n \] The formula for the sum of a finite geometric series \( \sum_{n=0}^{N} ar^n \) is: \[ \frac{a(r^{N+1} - 1)}{r - 1} \] Adjusting for our starting index (\( n = 2 \)): \[ \sum_{n=2}^{20} \left(\frac{3}{5}\right)^n = \left(\frac{3}{5}\right)^2 \cdot \frac{1 - \left(\frac{3}{5}\right)^{19}}{1 - \frac{3}{5}} = \frac{9}{25} \cdot \frac{1 - \left(\frac{3}{5}\right)^{19}}{\frac{2}{5}} = \frac{9}{10} \left(1 - \left(\frac{3}{5}\right)^{19}\right) \] Given that \( \left(\frac{3}{5}\right)^{19} \) is a very small number (approximately \( 6.09 \times 10^{-5} \)), the expression simplifies to: \[ \sum_{n=2}^{20} \left(\frac{3}{5}\right)^n \approx \frac{9}{10} \times 1 = 0.9 \] ### 3. Combining Both Sums Adding both results: \[ 1.5 + 0.9 = 2.4 \] ### **Final Answer** The value of the expression is approximately **2.4**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let’s break down the expression \( \sum _ { n = 1 } ^ { \infty } ( \frac { 3 } { 5 } ) ^ { n } + \sum _ { n = 2 } ^ { 20 } ( \frac { 3 } { 5 } ) ^ { n } \). The first part is an infinite geometric series where the first term is \( a = \frac{3}{5} \) and the common ratio \( r = \frac{3}{5} \). The formula for the sum of an infinite geometric series is: \[ S = \frac{a}{1 - r} \] In this case, \[ S = \frac{\frac{3}{5}}{1 - \frac{3}{5}} = \frac{\frac{3}{5}}{\frac{2}{5}} = \frac{3}{2} \] Now, for the second part \( \sum _ { n = 2 } ^ { 20 } ( \frac { 3 } { 5 } ) ^ { n } \), we rewrite it as: \[ \sum_{n=2}^{20} \left(\frac{3}{5}\right)^n = \left(\frac{3}{5}\right)^2 + \left(\frac{3}{5}\right)^3 + \cdots + \left(\frac{3}{5}\right)^{20} \] This is a finite geometric series where the first term \( a = \left(\frac{3}{5}\right)^2 \) and the common ratio \( r = \frac{3}{5} \). The number of terms \( n \) is from 2 to 20, so there are \( 20 - 2 + 1 = 19 \) terms. The formula for the sum of a finite geometric series is: \[ S_n = a \frac{1 - r^n}{1 - r} \] Thus, we have: \[ S_{19} = \left(\frac{3}{5}\right)^2 \frac{1 - \left(\frac{3}{5}\right)^{19}}{1 - \frac{3}{5}} = \left(\frac{3}{5}\right)^2 \cdot \frac{1 - \left(\frac{3}{5}\right)^{19}}{\frac{2}{5}} = \frac{9}{25} \cdot \frac{5}{2} \cdot \left( 1 - \left(\frac{3}{5}\right)^{19} \right) = \frac{9}{10} \left( 1 - \left(\frac{3}{5}\right)^{19} \right) \] Now we can sum both parts together: \[ \sum _ { n = 1 } ^ { \infty } \left( \frac { 3 } { 5 } \right) ^ { n } + \sum _ { n = 2 } ^ { 20 } \left( \frac { 3 } { 5 } \right) ^ { n } = \frac{3}{2} + \frac{9}{10} \left( 1 - \left(\frac{3}{5}\right)^{19} \right) \] Finally, combining these two sums gives us the final result. **So the final answer is:** \[ \frac{3}{2} + \frac{9}{10} \left( 1 - \left(\frac{3}{5}\right)^{19} \right) \]

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad