Use synthetic division to find the result when \( 3 x^{4}-19 x^{3}+30 x^{2}-2 x+11 \) is divided by \( x-3 \). If there is a remainder, express the result in the form \( q(x)+\frac{r( }{b(x} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To use synthetic division to divide \( 3x^4 - 19x^3 + 30x^2 - 2x + 11 \) by \( x - 3 \), we will use \( 3 \) as the divisor, since \( x - 3 = 0 \) when \( x = 3 \). 1. Write down the coefficients of the polynomial: \( 3, -19, 30, -2, 11 \). 2. Set up synthetic division: \[ \begin{array}{r|rrrrr} 3 & 3 & -19 & 30 & -2 & 11 \\ & & 9 & -30 & 0 & -6 \\ \hline & 3 & -10 & 0 & -2 & 5 \\ \end{array} \] 3. Bring down the first coefficient \( 3 \). 4. Multiply \( 3 \) (the divisor) by \( 3 \) (the first coefficient) to get \( 9 \), and add it to \( -19 \) to get \( -10 \). 5. Multiply \( 3 \) by \( -10 \) to get \( -30 \), and add to \( 30 \) to get \( 0 \). 6. Multiply \( 3 \) by \( 0 \) to get \( 0 \), and add to \( -2 \) to get \( -2 \). 7. Finally, multiply \( 3 \) by \( -2 \) to get \( -6 \), and add to \( 11 \) to get \( 5 \). The coefficients of the quotient polynomial are \( 3, -10, 0, -2 \), which gives us \( 3x^3 - 10x^2 - 2 \), and the remainder is \( 5 \). Thus, the result of the division can be expressed as: \[ 3x^3 - 10x^2 - 2 + \frac{5}{x - 3} \]