Pregunta
upstudy study bank question image url

Use synthetic division to find the result when \( 3 x^{4}-19 x^{3}+30 x^{2}-2 x+11 \) is divided by \( x-3 \). If there is a remainder, express the result in the form \( q(x)+\frac{r( }{b(x} \)

Ask by Savage King. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The result of dividing \( 3x^{4} - 19x^{3} + 30x^{2} - 2x + 11 \) by \( x - 3 \) is \( 3x^{3} - 10x^{2} - 2 \) with a remainder of 5. Therefore, the expression is: \[ 3x^{3} - 10x^{2} - 2 + \frac{5}{x - 3} \]

Solución

To divide the polynomial \( 3x^{4} - 19x^{3} + 30x^{2} - 2x + 11 \) by \( x - 3 \) using synthetic division, follow these steps: ### Step 1: Set Up Synthetic Division 1. **Identify \( c \):** Since we are dividing by \( x - 3 \), \( c = 3 \). 2. **Write Down the Coefficients:** List the coefficients of the dividend polynomial in descending order of degree: \[ 3 \quad -19 \quad 30 \quad -2 \quad 11 \] ### Step 2: Perform Synthetic Division \[ \begin{array}{c|ccccc} 3 & 3 & -19 & 30 & -2 & 11 \\ \hline & & 9 & -30 & 0 & -6 \\ \hline & 3 & -10 & 0 & -2 & 5 \\ \end{array} \] **Explanation of Each Step:** 1. **Bring Down the First Coefficient:** - Bring down the **3**. 2. **Multiply and Add:** - Multiply **3** (the value just brought down) by **3** (our \( c \)) to get **9**. - Add **-19** (the next coefficient) and **9** to get **-10**. 3. **Repeat the Process:** - Multiply **-10** by **3** to get **-30**. - Add **30** and **-30** to get **0**. - Multiply **0** by **3** to get **0**. - Add **-2** and **0** to get **-2**. - Multiply **-2** by **3** to get **-6**. - Add **11** and **-6** to get **5**. ### Step 3: Interpret the Result The bottom row of the synthetic division (excluding the last number) represents the coefficients of the quotient polynomial, and the last number is the remainder. - **Quotient Coefficients:** \( 3 \), \( -10 \), \( 0 \), \( -2 \) - **Remainder:** \( 5 \) Thus, the quotient polynomial is: \[ 3x^{3} - 10x^{2} - 2 \] ### Step 4: Express the Final Result Including the remainder, the division can be expressed as: \[ \frac{3x^{4} - 19x^{3} + 30x^{2} - 2x + 11}{x - 3} = 3x^{3} - 10x^{2} - 2 + \frac{5}{x - 3} \] **Final Answer:** \[ 3x^{3} - 10x^{2} - 2 + \frac{5}{x - 3} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To use synthetic division to divide \( 3x^4 - 19x^3 + 30x^2 - 2x + 11 \) by \( x - 3 \), we will use \( 3 \) as the divisor, since \( x - 3 = 0 \) when \( x = 3 \). 1. Write down the coefficients of the polynomial: \( 3, -19, 30, -2, 11 \). 2. Set up synthetic division: \[ \begin{array}{r|rrrrr} 3 & 3 & -19 & 30 & -2 & 11 \\ & & 9 & -30 & 0 & -6 \\ \hline & 3 & -10 & 0 & -2 & 5 \\ \end{array} \] 3. Bring down the first coefficient \( 3 \). 4. Multiply \( 3 \) (the divisor) by \( 3 \) (the first coefficient) to get \( 9 \), and add it to \( -19 \) to get \( -10 \). 5. Multiply \( 3 \) by \( -10 \) to get \( -30 \), and add to \( 30 \) to get \( 0 \). 6. Multiply \( 3 \) by \( 0 \) to get \( 0 \), and add to \( -2 \) to get \( -2 \). 7. Finally, multiply \( 3 \) by \( -2 \) to get \( -6 \), and add to \( 11 \) to get \( 5 \). The coefficients of the quotient polynomial are \( 3, -10, 0, -2 \), which gives us \( 3x^3 - 10x^2 - 2 \), and the remainder is \( 5 \). Thus, the result of the division can be expressed as: \[ 3x^3 - 10x^2 - 2 + \frac{5}{x - 3} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad