Responder
The general solution is \( 6x - y - \frac{2y^{2}}{x} = C \).
Solución
To solve the differential equation:
\[
(6x^{2} + 2y^{2})\,dx - (x^{2} + 4xy)\,dy = 0
\]
we can follow these steps:
### 1. **Check for Exactness**
First, write the equation in the standard form \( M(x, y)\,dx + N(x, y)\,dy = 0 \):
\[
M = 6x^{2} + 2y^{2}, \quad N = -(x^{2} + 4xy)
\]
Compute the partial derivatives:
\[
\frac{\partial M}{\partial y} = 4y, \quad \frac{\partial N}{\partial x} = - (2x + 4y)
\]
Since \( \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \), the equation is **not exact**.
### 2. **Find an Integrating Factor**
To make the equation exact, we look for an integrating factor \( \mu(x) \) that depends only on \( x \).
Calculate:
\[
\frac{M_y - N_x}{N} = \frac{4y - (-2x - 4y)}{-(x^{2} + 4xy)} = \frac{2x + 8y}{-x^{2} - 4xy} = \frac{-2(x + 4y)}{x(x + 4y)} = \frac{-2}{x}
\]
Since this expression depends only on \( x \), the integrating factor is:
\[
\mu(x) = e^{\int -\frac{2}{x} \, dx} = e^{-2 \ln x} = x^{-2}
\]
### 3. **Multiply Through by the Integrating Factor**
Multiply the entire differential equation by \( \mu(x) = x^{-2} \):
\[
\left(6x^{2} + 2y^{2}\right)x^{-2} dx - \left(x^{2} + 4xy\right)x^{-2} dy = 0
\]
Simplify:
\[
(6 + 2\frac{y^{2}}{x^{2}})\,dx - \left(1 + 4\frac{y}{x}\right)\,dy = 0
\]
Now, the equation is **exact**.
### 4. **Find the Potential Function**
Find a function \( \psi(x, y) \) such that:
\[
\frac{\partial \psi}{\partial x} = 6 + 2\frac{y^{2}}{x^{2}}, \quad \frac{\partial \psi}{\partial y} = -1 - 4\frac{y}{x}
\]
Integrate \( \frac{\partial \psi}{\partial x} \) with respect to \( x \):
\[
\psi(x, y) = \int \left(6 + 2\frac{y^{2}}{x^{2}}\right) dx = 6x - 2\frac{y^{2}}{x} + h(y)
\]
Differentiate \( \psi \) with respect to \( y \):
\[
\frac{\partial \psi}{\partial y} = -4\frac{y}{x} + h'(y)
\]
Set this equal to \( -1 - 4\frac{y}{x} \):
\[
-4\frac{y}{x} + h'(y) = -1 - 4\frac{y}{x} \implies h'(y) = -1 \implies h(y) = -y + C
\]
Thus, the potential function is:
\[
\psi(x, y) = 6x - \frac{2y^{2}}{x} - y + C
\]
### 5. **General Solution**
Set \( \psi(x, y) = \text{constant} \):
\[
6x - \frac{2y^{2}}{x} - y = C
\]
where \( C \) is an arbitrary constant.
### **Final Answer**
After simplifying, a general solution is 6 x – y – (2 y²)⁄x equals a constant. Thus,
6x − y − 2y²/x = C
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución