Pregunta
upstudy study bank question image url

\( ( 6 x ^ { 2 } + 2 y ^ { 2 } ) d x - ( x ^ { 2 } + 4 x y ) d y = 0 \)

Ask by Schneider Hall. in Nigeria
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The general solution is \( 6x - y - \frac{2y^{2}}{x} = C \).

Solución

To solve the differential equation: \[ (6x^{2} + 2y^{2})\,dx - (x^{2} + 4xy)\,dy = 0 \] we can follow these steps: ### 1. **Check for Exactness** First, write the equation in the standard form \( M(x, y)\,dx + N(x, y)\,dy = 0 \): \[ M = 6x^{2} + 2y^{2}, \quad N = -(x^{2} + 4xy) \] Compute the partial derivatives: \[ \frac{\partial M}{\partial y} = 4y, \quad \frac{\partial N}{\partial x} = - (2x + 4y) \] Since \( \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \), the equation is **not exact**. ### 2. **Find an Integrating Factor** To make the equation exact, we look for an integrating factor \( \mu(x) \) that depends only on \( x \). Calculate: \[ \frac{M_y - N_x}{N} = \frac{4y - (-2x - 4y)}{-(x^{2} + 4xy)} = \frac{2x + 8y}{-x^{2} - 4xy} = \frac{-2(x + 4y)}{x(x + 4y)} = \frac{-2}{x} \] Since this expression depends only on \( x \), the integrating factor is: \[ \mu(x) = e^{\int -\frac{2}{x} \, dx} = e^{-2 \ln x} = x^{-2} \] ### 3. **Multiply Through by the Integrating Factor** Multiply the entire differential equation by \( \mu(x) = x^{-2} \): \[ \left(6x^{2} + 2y^{2}\right)x^{-2} dx - \left(x^{2} + 4xy\right)x^{-2} dy = 0 \] Simplify: \[ (6 + 2\frac{y^{2}}{x^{2}})\,dx - \left(1 + 4\frac{y}{x}\right)\,dy = 0 \] Now, the equation is **exact**. ### 4. **Find the Potential Function** Find a function \( \psi(x, y) \) such that: \[ \frac{\partial \psi}{\partial x} = 6 + 2\frac{y^{2}}{x^{2}}, \quad \frac{\partial \psi}{\partial y} = -1 - 4\frac{y}{x} \] Integrate \( \frac{\partial \psi}{\partial x} \) with respect to \( x \): \[ \psi(x, y) = \int \left(6 + 2\frac{y^{2}}{x^{2}}\right) dx = 6x - 2\frac{y^{2}}{x} + h(y) \] Differentiate \( \psi \) with respect to \( y \): \[ \frac{\partial \psi}{\partial y} = -4\frac{y}{x} + h'(y) \] Set this equal to \( -1 - 4\frac{y}{x} \): \[ -4\frac{y}{x} + h'(y) = -1 - 4\frac{y}{x} \implies h'(y) = -1 \implies h(y) = -y + C \] Thus, the potential function is: \[ \psi(x, y) = 6x - \frac{2y^{2}}{x} - y + C \] ### 5. **General Solution** Set \( \psi(x, y) = \text{constant} \): \[ 6x - \frac{2y^{2}}{x} - y = C \] where \( C \) is an arbitrary constant. ### **Final Answer** After simplifying, a general solution is 6 x – y – (2 y²)⁄x equals a constant. Thus, 6x − y − 2y²/x = C

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

This equation represents a differential equation that can be viewed in the context of exact equations. To determine if it's exact, we would need to check if \( \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \), where \( M = 6x^2 + 2y^2 \) and \( N = -(x^2 + 4xy) \). If they are equal, this means the equation can potentially be solved by finding a function whose differential equals this form, giving insights into the behavior of the system being modeled. In real-world applications, a differential equation like this can model various phenomena, such as motion or force balance in physics and engineering. For example, the terms might represent forces acting on a particle, with \( x \) and \( y \) as spatial coordinates. Understanding these relationships can be crucial for tasks like optimizing design in mechanical systems or predicting the behavior of dynamic systems over time.

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad