Pregunta
upstudy study bank question image url

Find all real and imaginary solutions to the equation. \[ n^{3}-4 n^{2}-n+4=0 \]

Ask by Adkins Norris. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions to the equation \( n^{3} - 4n^{2} - n + 4 = 0 \) are: \[ n = 1,\quad n = 4,\quad n = -1 \]

Solución

To solve the equation \( n^{3} - 4n^{2} - n + 4 = 0 \), we'll follow these steps: 1. **Identify Possible Rational Roots:** Using the Rational Root Theorem, the possible rational roots are the factors of the constant term (4) divided by the factors of the leading coefficient (1). Thus, the possible rational roots are: \[ \pm1, \pm2, \pm4 \] 2. **Test Possible Roots:** - **Test \( n = 1 \):** \[ 1^3 - 4(1)^2 - 1 + 4 = 1 - 4 - 1 + 4 = 0 \] So, \( n = 1 \) is a root. 3. **Factor the Polynomial:** Since \( n = 1 \) is a root, \( (n - 1) \) is a factor. Perform polynomial division or synthetic division to factor the cubic polynomial: \[ n^{3} - 4n^{2} - n + 4 = (n - 1)(n^{2} - 3n - 4) \] 4. **Solve the Quadratic Equation:** Solve \( n^{2} - 3n - 4 = 0 \) using the quadratic formula: \[ n = \frac{3 \pm \sqrt{9 + 16}}{2} = \frac{3 \pm 5}{2} \] This gives two solutions: \[ n = \frac{3 + 5}{2} = 4 \quad \text{and} \quad n = \frac{3 - 5}{2} = -1 \] 5. **Conclusion:** All roots of the equation are real numbers. **Final Solutions:** \[ n = 1,\quad n = 4,\quad n = -1 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the solutions to the equation \( n^{3}-4 n^{2}-n+4=0 \), we can start by using the Rational Root Theorem to test for potential rational roots among the factors of the constant term (4) and the leading coefficient (1). The possible rational roots are: \( \pm 1, \pm 2, \pm 4 \). Testing \( n = 1 \): \[ 1^3 - 4(1^2) - 1 + 4 = 1 - 4 - 1 + 4 = 0 \] Since \( n = 1 \) is a root, we can factor the polynomial by dividing it by \( n - 1 \). Using synthetic division: ``` 1 | 1 -4 -1 4 | 1 -3 -4 ---------------------- 1 -3 -4 0 ``` This gives us the quotient \( n^2 - 3n - 4 \). Therefore, we can express the original polynomial as: \[ n^3 - 4n^2 - n + 4 = (n - 1)(n^2 - 3n - 4) \] Next, we can factor \( n^2 - 3n - 4 \): To factor, we look for two numbers that multiply to \(-4\) and add to \(-3\). These numbers are \(-4\) and \(1\). Thus, we can factor it as: \[ n^2 - 3n - 4 = (n - 4)(n + 1) \] Now, we can write the complete factorization of the polynomial as: \[ n^3 - 4n^2 - n + 4 = (n - 1)(n - 4)(n + 1) \] Setting each factor equal to zero gives us the solutions: \[ n - 1 = 0 \quad \Rightarrow \quad n = 1 \] \[ n - 4 = 0 \quad \Rightarrow \quad n = 4 \] \[ n + 1 = 0 \quad \Rightarrow \quad n = -1 \] Thus, the complete set of solutions is: \[ n = 1, \quad n = 4, \quad n = -1 \] All solutions are real, and there are no imaginary solutions to this equation.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad