Pregunta
upstudy study bank question image url

10.) \( y=\ln (x-1) \)

Ask by Garza Schmidt. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( y = \ln(x - 1) \) has a domain of \( x > 1 \), a range of all real numbers, no y-intercept, and a vertical asymptote at \( x = 1 \).

Solución

To analyze the function \( y = \ln(x - 1) \), we can explore its features, such as its domain, range, intercepts, and asymptotes. ### Step 1: Determine the Domain The natural logarithm function \( \ln(x) \) is defined only for positive values. Therefore, for \( y = \ln(x - 1) \), we need \( x - 1 > 0 \). \[ x - 1 > 0 \implies x > 1 \] Thus, the domain of the function is \( (1, \infty) \). ### Step 2: Determine the Range The range of the natural logarithm function is all real numbers. Therefore, since \( y = \ln(x - 1) \) can take any real value as \( x \) approaches \( 1 \) from the right and goes to infinity, the range is: \[ (-\infty, \infty) \] ### Step 3: Find the Intercept To find the y-intercept, we set \( x = 0 \): \[ y = \ln(0 - 1) \quad \text{(undefined)} \] Since the function is undefined for \( x \leq 1 \), there is no y-intercept. ### Step 4: Find the Asymptote As \( x \) approaches \( 1 \) from the right, \( y \) approaches \( -\infty \). Therefore, there is a vertical asymptote at: \[ x = 1 \] ### Summary of Features - **Domain**: \( (1, \infty) \) - **Range**: \( (-\infty, \infty) \) - **Y-intercept**: None - **Vertical Asymptote**: \( x = 1 \) If you need further analysis or specific calculations, please let me know!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that the natural logarithm function, like the one in \( y=\ln(x-1) \), often pops up in finance, science, and growth models? The natural logarithm is the inverse of the exponential function, making it super handy when you need to solve for variables in situations involving growth rates, such as population growth or interest rates! When the input (x) is greater than 1, it allows you to calculate real outputs, which can signify a shift or baseline in a given context. Be cautious with this function, though! A common mistake is plugging in values for x that are less than or equal to 1, which would result in taking the logarithm of zero or a negative number – not permissible in real numbers! Always remember, the domain of \( y=\ln(x-1) \) is strictly \( x > 1 \), so make sure to keep it above that threshold to avoid falling into the trap of undefined values. Happy log-ing!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad