Pregunta
upstudy study bank question image url

Question Which of the following sets of numbers could not represent the three sides of a triangle? Answer \( \begin{array}{l}\{11,19,32\} \\ \{8,18,24\} \\ \{11,23,31\} \\ \{7,22,27\}\end{array} \) \( \begin{array}{l}\text { Show Examples } \\ \text { You have up to } 33 \text { questions left to raise your score. }\end{array} \)

Ask by Coleman Burns. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The set \{11, 19, 32\} cannot form a valid triangle.

Solución

To determine which set of numbers **cannot** represent the sides of a triangle, we can use the **Triangle Inequality Theorem**. This theorem states that for any three sides to form a valid triangle, the sum of any two sides must be **greater** than the third side. Let's examine each set: 1. **\{11, 19, 32\}** - **11 + 19 = 30** - **30** is **not greater** than **32** Since the sum of the two smaller sides (11 and 19) is **less than** the largest side (32), this set **cannot** form a valid triangle. 2. **\{8, 18, 24\}** - **8 + 18 = 26 > 24** - **8 + 24 = 32 > 18** - **18 + 24 = 42 > 8** All combinations satisfy the Triangle Inequality Theorem. This set **can** form a valid triangle. 3. **\{11, 23, 31\}** - **11 + 23 = 34 > 31** - **11 + 31 = 42 > 23** - **23 + 31 = 54 > 11** All combinations satisfy the Triangle Inequality Theorem. This set **can** form a valid triangle. 4. **\{7, 22, 27\}** - **7 + 22 = 29 > 27** - **7 + 27 = 34 > 22** - **22 + 27 = 49 > 7** All combinations satisfy the Triangle Inequality Theorem. This set **can** form a valid triangle. **Conclusion:** The set **\{11, 19, 32\}** **cannot** represent the sides of a valid triangle because it fails to satisfy the Triangle Inequality Theorem.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine if a set of numbers can represent the sides of a triangle, we use the triangle inequality theorem. This theorem states that the sum of the lengths of any two sides must be greater than the length of the third side. For example, in the set {11, 19, 32}, we find that 11 + 19 = 30, which is not greater than 32. Therefore, {11, 19, 32} cannot represent a triangle! As for real-world applications, understanding the properties of triangles is essential in various fields like architecture, engineering, and even computer graphics. For example, architects often use the triangle inequality when designing stable structures, ensuring that different components fit together according to these rules. So next time you spot a triangle, think about the strong principles underpinning its very existence!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad