Pregunta
upstudy study bank question image url

Payments with periodic rates. Denise has her heart set on being a millionaire. What payment does Denise need to make at the end of each month over the coming 40 years at \( 9 \% \) APR to reach her retirement goal of \( \$ 1.2 \) million? What monthly payment does Denise need to make to reach her retirement goal? \( \$ \square \) (Round to the nearest cenir)

Ask by Stewart Riley. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Denise needs to make a monthly payment of \$257.48 to reach her retirement goal of \$1.2 million in 40 years at a 9% APR.

Solución

To determine the monthly payment Denise needs to make to reach her retirement goal of \$1.2 million in 40 years with a 9% annual percentage rate (APR), we'll use the future value of an annuity formula: \[ FV = PMT \times \left(\frac{(1 + r)^n - 1}{r}\right) \] Where: - \( FV \) is the future value (\$1,200,000) - \( PMT \) is the monthly payment - \( r \) is the monthly interest rate (\( \frac{9\%}{12} = 0.0075 \)) - \( n \) is the total number of payments (\( 40 \times 12 = 480 \) months) Rearranging the formula to solve for \( PMT \): \[ PMT = \frac{FV}{\left(\frac{(1 + r)^n - 1}{r}\right)} \] **Step-by-Step Calculation:** 1. **Calculate \((1 + r)^n\):** \[ (1 + 0.0075)^{480} \approx 35.9871 \] 2. **Calculate the annuity factor:** \[ \frac{35.9871 - 1}{0.0075} = \frac{34.9871}{0.0075} \approx 4,664.947 \] 3. **Determine the monthly payment:** \[ PMT = \frac{1,200,000}{4,664.947} \approx 257.48 \] **Conclusion:** Denise needs to make **\$257.48** at the end of each month to reach her retirement goal of \$1.2 million in 40 years at a 9% APR. **Answer:** Denise needs to make a monthly payment of **\$257.48** to reach her retirement goal.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To calculate the monthly payment Denise needs to make in order to reach her retirement goal of $1.2 million in 40 years at a 9% annual interest rate, we can use the future value of an annuity formula. The formula is: \[ FV = P \times \frac{(1 + r)^n - 1}{r} \] Where: - \( FV \) is the future value ($1,200,000) - \( P \) is the monthly payment - \( r \) is the monthly interest rate (annual rate / 12) - \( n \) is the total number of payments (number of years × 12) Using \( r = 0.09 / 12 \approx 0.0075 \) and \( n = 40 \times 12 = 480 \), we rearrange the formula to solve for \( P \): \[ P = \frac{FV \times r}{(1 + r)^n - 1} \] Substituting the values: \[ P = \frac{1,200,000 \times 0.0075}{(1 + 0.0075)^{480} - 1} \] Calculating this yields: 1. Calculate \( (1 + 0.0075)^{480} \) which is approximately 10.932. 2. Then \( P \approx \frac{1,200,000 \times 0.0075}{10.932 - 1} \approx \frac{9,000}{9.932} \approx 905.93 \). Therefore, Denise needs to make a monthly payment of approximately \( \$905.93 \) to achieve her retirement goal of \( \$1.2 \) million in 40 years.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad