(e) Consider the geometric sequence \( -320 ; 160 ;-80 ; \ldots ;-\frac{5}{64} \). (1) Calculate \( T_{8} \). (2) Determine the value of \( k \) if \( T_{k}=-\frac{5}{16} \). (3) How many terms are there in this sequence?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve the geometric sequence \( -320, 160, -80, \ldots, -\frac{5}{64} \), we first need to identify the first term and the common ratio. 1. **Calculate \( T_{8} \)**: The first term \( a = -320 \) and the common ratio \( r \) can be calculated as: \[ r = \frac{160}{-320} = -\frac{1}{2} \] The formula for the \( n \)-th term of a geometric sequence is given by: \[ T_n = a \cdot r^{n-1} \] Therefore, for \( T_8 \): \[ T_8 = -320 \cdot \left(-\frac{1}{2}\right)^{8-1} = -320 \cdot \left(-\frac{1}{2}\right)^7 = -320 \cdot -\frac{1}{128} = \frac{320}{128} = 2.5 \] 2. **Determine the value of \( k \) if \( T_{k}=-\frac{5}{16} \)**: We need to set up the equation: \[ T_k = a \cdot r^{k-1} = -320 \cdot \left(-\frac{1}{2}\right)^{k-1} = -\frac{5}{16} \] Dividing both sides by -1 gives: \[ 320 \cdot \left(\frac{1}{2}\right)^{k-1} = \frac{5}{16} \] Simplifying gives: \[ \left(\frac{1}{2}\right)^{k-1} = \frac{5}{16 \cdot 320} = \frac{5}{5120} \] Now, recognizing that \( 5120 = 2^8 \cdot 5 \) (since \( 5120 = 256 \times 20 = 2^8 \cdot 2^2 \cdot 5 \)), we have: \[ \left(\frac{1}{2}\right)^{k-1} = \frac{5}{2^9} \] The powers of \( 2 \) imply: \[ -k + 1 = -9 \text{ (implying we get to the } 9^{th} \text{ power with \( k-1=9 \) )} \] Thus, \( k = 10 \). 3. **How many terms are in this sequence?**: To find the total number of terms, we will set \( T_n = -\frac{5}{64} \) in our formula: \[ T_n = -320 \cdot \left(-\frac{1}{2}\right)^{n-1} = -\frac{5}{64} \] Dividing both sides by -1 gives: \[ 320 \cdot \left(\frac{1}{2}\right)^{n-1} = \frac{5}{64} \] Simplifying yields: \[ \left(\frac{1}{2}\right)^{n-1} = \frac{5}{20480} \] Since \( 20480 = 2^{11} \cdot 5 \) leads us to deduce: \[ n-1 = 11 \text{, thus } n = 12. \] Therefore, there are a total of **12 terms** in the sequence.