A function of the form \( f(x)=a b^{x} \) is modified so that the \( b \) value remains the same but the \( a \) value is increased by 2 . How do the domain and range of the new function compare to the domain and range of the original function? Check all that apply. The range stays the same. The range becomes \( y>2 \). The domain stays the same. The domain becomes \( x>2 \). The domain becomes becomes \( y \geq 2 \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
The modified function takes the form \( f(x) = (a + 2)b^{x} \). The domain of both the original and modified functions remains all real numbers, since exponential functions are defined for every \( x \). So, the domain stays the same. However, the range of the original function is typically \( y > 0 \) if \( a > 0 \), and when \( a \) is increased by 2, the range shifts to \( y > 2 \). Therefore, the range of the new function indeed becomes \( y > 2 \). So, the correct comparisons are: - The range becomes \( y > 2 \). - The domain stays the same.