Find \( \cot (\theta) \) if \( \sin (\theta)=\frac{\sigma}{13} \) and \( \theta \) terminates in QI. Answer exactly. \( \cot (\theta)=\square \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find \( \cot (\theta) \) given \( \sin (\theta) = \frac{\sigma}{13} \), we can use the Pythagorean identity: \[ \sin^2(\theta) + \cos^2(\theta) = 1 \] Substituting \( \sin(\theta) \): \[ \left( \frac{\sigma}{13} \right)^2 + \cos^2(\theta) = 1 \] This expands to: \[ \frac{\sigma^2}{169} + \cos^2(\theta) = 1 \] Rearranging gives: \[ \cos^2(\theta) = 1 - \frac{\sigma^2}{169} \] Now, let's find \( \cos(\theta) \). Since \( \theta \) terminates in Quadrant I, \( \cos(\theta) \) is positive: \[ \cos(\theta) = \sqrt{1 - \frac{\sigma^2}{169}} = \sqrt{\frac{169 - \sigma^2}{169}} = \frac{\sqrt{169 - \sigma^2}}{13} \] Next, we can find \( \cot(\theta) \): \[ \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} = \frac{\frac{\sqrt{169 - \sigma^2}}{13}}{\frac{\sigma}{13}} = \frac{\sqrt{169 - \sigma^2}}{\sigma} \] Thus, the exact expression for \( \cot(\theta) \) is: \[ \cot(\theta) = \frac{\sqrt{169 - \sigma^2}}{\sigma} \]