Pregunta
upstudy study bank question image url

Consider the points \( P(1,5,5) \) and \( Q(7,7,11) \). a. Find \( \overrightarrow{P Q} \) and state your answer in two forms: \( \langle a, b, c\rangle \) and \( a i+b j+c k \). b. Find the magnitude of \( \overrightarrow{P Q} \). c. Find two unit vectors parallel to \( \overrightarrow{P Q} \). a. Find \( \overrightarrow{P Q} \). \( \overrightarrow{P Q}=\langle 6,2,6\rangle=(6) i+(2) j+(6) k \) b. Find the magnitude of \( \overrightarrow{P Q} \). The magnitude of \( \overrightarrow{P Q} \) is \( 2 \sqrt{19} \). (Type an exact answer, using radicals as needed.) c. Find two unit vectors parallel to \( \overrightarrow{P Q} \). The unit vector in the direction of \( \overrightarrow{P Q} \) is \( \langle\square \), \( \square \). (Type exact answers, using radicals as needed.)

Ask by Griffiths Turnbull. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The two unit vectors parallel to \( \overrightarrow{P Q} \) are: \[ \left\langle \frac{3}{\sqrt{19}}, \frac{1}{\sqrt{19}}, \frac{3}{\sqrt{19}} \right\rangle \quad \text{and} \quad \left\langle -\frac{3}{\sqrt{19}}, -\frac{1}{\sqrt{19}}, -\frac{3}{\sqrt{19}} \right\rangle \]

Solución

**Problem c. Find two unit vectors parallel to \( \overrightarrow{P Q} \).** To find unit vectors parallel to \( \overrightarrow{P Q} \), we first need to determine the unit vector in the direction of \( \overrightarrow{P Q} \) and then consider its opposite direction. 1. **Calculate the Unit Vector in the Direction of \( \overrightarrow{P Q} \):** The vector \( \overrightarrow{P Q} \) is given by: \[ \overrightarrow{P Q} = \langle 6, 2, 6 \rangle \] The magnitude of \( \overrightarrow{P Q} \) is: \[ \| \overrightarrow{P Q} \| = 2\sqrt{19} \] The unit vector \( \mathbf{u} \) in the direction of \( \overrightarrow{P Q} \) is: \[ \mathbf{u} = \frac{\overrightarrow{P Q}}{\| \overrightarrow{P Q} \|} = \left\langle \frac{6}{2\sqrt{19}}, \frac{2}{2\sqrt{19}}, \frac{6}{2\sqrt{19}} \right\rangle = \left\langle \frac{3}{\sqrt{19}}, \frac{1}{\sqrt{19}}, \frac{3}{\sqrt{19}} \right\rangle \] Alternatively, expressed with radicals in the denominator rationalized: \[ \mathbf{u} = \left\langle \frac{3\sqrt{19}}{19}, \frac{\sqrt{19}}{19}, \frac{3\sqrt{19}}{19} \right\rangle = \frac{\sqrt{19}}{19} \langle 3, 1, 3 \rangle \] 2. **Determine the Two Unit Vectors Parallel to \( \overrightarrow{P Q} \):** - **First Unit Vector (Same Direction):** \[ \mathbf{u} = \left\langle \frac{3}{\sqrt{19}}, \frac{1}{\sqrt{19}}, \frac{3}{\sqrt{19}} \right\rangle \] - **Second Unit Vector (Opposite Direction):** \[ -\mathbf{u} = \left\langle -\frac{3}{\sqrt{19}}, -\frac{1}{\sqrt{19}}, -\frac{3}{\sqrt{19}} \right\rangle \] **Final Answer:** The two unit vectors parallel to \( \overrightarrow{P Q} \) are \[ \boxed{ \left\langle\, \dfrac{3}{\,\sqrt{19\,}},\;\dfrac{1}{\,\sqrt{19\,}},\;\dfrac{3}{\,\sqrt{19\,}}\,\right\rangle \quad \text{and} \quad \left\langle\, \dfrac{-3}{\,\sqrt{19\,}},\;\dfrac{-1}{\,\sqrt{19\,}},\;\dfrac{-3}{\,\sqrt{19\,}}\,\right\rangle } \] **Alternatively, expressed using the \( i, j, k \) notation:** \[ \boxed{ \left(\dfrac{3}{\,\sqrt{19\,}}\,i + \dfrac{1}{\,\sqrt{19\,}}\,j + \dfrac{3}{\,\sqrt{19\,}}\,k\right) \quad \text{and} \quad \left(-\dfrac{3}{\,\sqrt{19\,}}\,i - \dfrac{1}{\,\sqrt{19\,}}\,j - \dfrac{3}{\,\sqrt{19\,}}\,k\right) } \] These unit vectors have a magnitude of 1 and are parallel to \( \overrightarrow{P Q} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

The vector \( \overrightarrow{P Q} \) is found by subtracting the coordinates of point \( P \) from point \( Q \): \[ \overrightarrow{P Q} = Q - P = (7 - 1, 7 - 5, 11 - 5) = \langle 6, 2, 6 \rangle \] In vector notation, it can be expressed as \( 6i + 2j + 6k \). To find the magnitude of \( \overrightarrow{P Q} \), we use the formula: \[ ||\overrightarrow{P Q}|| = \sqrt{6^2 + 2^2 + 6^2} = \sqrt{36 + 4 + 36} = \sqrt{76} = 2\sqrt{19} \] Now, to find the unit vector, we first calculate the unit vector \( \hat{u} \) in the direction of \( \overrightarrow{P Q} \): \[ \hat{u} = \frac{\overrightarrow{P Q}}{||\overrightarrow{P Q}||} = \frac{\langle 6, 2, 6 \rangle}{2\sqrt{19}} = \left\langle \frac{6}{2\sqrt{19}}, \frac{2}{2\sqrt{19}}, \frac{6}{2\sqrt{19}} \right\rangle = \left\langle \frac{3}{\sqrt{19}}, \frac{1}{\sqrt{19}}, \frac{3}{\sqrt{19}} \right\rangle \] To find a second unit vector in the opposite direction, we simply negate the components: \[ -\hat{u} = \left\langle -\frac{3}{\sqrt{19}}, -\frac{1}{\sqrt{19}}, -\frac{3}{\sqrt{19}} \right\rangle \] Thus, the two unit vectors parallel to \( \overrightarrow{P Q} \) are: \[ \left\langle \frac{3}{\sqrt{19}}, \frac{1}{\sqrt{19}}, \frac{3}{\sqrt{19}} \right\rangle \text{ and } \left\langle -\frac{3}{\sqrt{19}}, -\frac{1}{\sqrt{19}}, -\frac{3}{\sqrt{19}} \right\rangle \]

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad