Responder
**Part 1:**
\[
f'(x) = -\frac{6}{x^2}
\]
**Part 2:**
\[
f'(x) = \frac{1}{2\sqrt{x}} + 3^{x} \ln 3 + \frac{6}{x^4}
\]
\[
g'(x) = \ln x \cdot \cos(2x) + \frac{\sin x \cos x}{x}
\]
\[
h'(x) = (x^{2} - 2)^{x + 1} \left( \ln (x^{2} - 2) + \frac{2x(x + 1)}{x^{2} - 2} \right )
\]
Solución
Certainly! Let's tackle **Question 4** step by step.
---
### **Part 1: Using the Method of First Principles to Determine the Derivative of \( f(x) = \frac{6}{x} \)**
**First Principles Definition:**
The derivative of a function \( f(x) \) using first principles (the limit definition) is given by:
\[
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
\]
**Applying to \( f(x) = \frac{6}{x} \):**
1. **Compute \( f(x+h) \):**
\[
f(x+h) = \frac{6}{x + h}
\]
2. **Set Up the Difference Quotient:**
\[
f'(x) = \lim_{h \to 0} \frac{\frac{6}{x + h} - \frac{6}{x}}{h}
\]
3. **Simplify the Numerator:**
\[
\frac{6}{x + h} - \frac{6}{x} = 6 \left( \frac{1}{x + h} - \frac{1}{x} \right) = 6 \left( \frac{x - (x + h)}{x(x + h)} \right) = 6 \left( \frac{-h}{x(x + h)} \right) = -\frac{6h}{x(x + h)}
\]
4. **Formulate the Difference Quotient:**
\[
f'(x) = \lim_{h \to 0} \frac{-\frac{6h}{x(x + h)}}{h} = \lim_{h \to 0} -\frac{6}{x(x + h)}
\]
5. **Take the Limit as \( h \to 0 \):**
\[
f'(x) = -\frac{6}{x \cdot x} = -\frac{6}{x^2}
\]
**Final Answer:**
\[
f'(x) = -\frac{6}{x^2}
\]
---
### **Part 2: Using Appropriate Differentiation Methods**
We'll now find the derivatives of the following functions using appropriate differentiation rules.
#### **(i) \( f(x) = \sqrt{x} + 3^{x} - \frac{2}{x^{3}} \)**
**Rewrite the Function for Easier Differentiation:**
\[
f(x) = x^{1/2} + 3^{x} - 2x^{-3}
\]
**Differentiate Term by Term:**
1. **Derivative of \( x^{1/2} \):**
\[
\frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}}
\]
2. **Derivative of \( 3^{x} \):**
\[
\frac{d}{dx} \left( 3^{x} \right) = 3^{x} \ln 3
\]
3. **Derivative of \( -2x^{-3} \):**
\[
\frac{d}{dx} \left( -2x^{-3} \right) = -2 \cdot (-3) x^{-4} = 6x^{-4} = \frac{6}{x^4}
\]
**Combine the Derivatives:**
\[
f'(x) = \frac{1}{2\sqrt{x}} + 3^{x} \ln 3 + \frac{6}{x^4}
\]
**Final Answer:**
\[
f'(x) = \frac{1}{2\sqrt{x}} + 3^{x} \ln 3 + \frac{6}{x^4}
\]
---
#### **(ii) \( g(x) = \sin x \cdot \ln x \cdot \cos x \)**
**Simplify the Function:**
Notice that \( \sin x \cdot \cos x = \frac{1}{2} \sin(2x) \), but for differentiation purposes, it's more straightforward to use the product rule for three functions.
**Product Rule for Three Functions:**
If \( g(x) = u(x) \cdot v(x) \cdot w(x) \), then:
\[
g'(x) = u'(x) \cdot v(x) \cdot w(x) + u(x) \cdot v'(x) \cdot w(x) + u(x) \cdot v(x) \cdot w'(x)
\]
**Let:**
\[
u(x) = \sin x, \quad v(x) = \ln x, \quad w(x) = \cos x
\]
**Compute the Derivatives:**
1. **\( u'(x) = \cos x \)**
2. **\( v'(x) = \frac{1}{x} \)**
3. **\( w'(x) = -\sin x \)**
**Apply the Product Rule:**
\[
g'(x) = (\cos x) \cdot (\ln x) \cdot (\cos x) + (\sin x) \cdot \left( \frac{1}{x} \right) \cdot (\cos x) + (\sin x) \cdot (\ln x) \cdot (-\sin x)
\]
**Simplify Each Term:**
1. **First Term:**
\[
\cos x \cdot \ln x \cdot \cos x = \ln x \cdot \cos^2 x
\]
2. **Second Term:**
\[
\sin x \cdot \frac{1}{x} \cdot \cos x = \frac{\sin x \cos x}{x}
\]
3. **Third Term:**
\[
\sin x \cdot \ln x \cdot (-\sin x) = -\ln x \cdot \sin^2 x
\]
**Combine All Terms:**
\[
g'(x) = \ln x \cdot \cos^2 x + \frac{\sin x \cos x}{x} - \ln x \cdot \sin^2 x
\]
**Factor Out \( \ln x \) from the First and Third Terms:**
\[
g'(x) = \ln x ( \cos^2 x - \sin^2 x ) + \frac{\sin x \cos x}{x}
\]
**Use Trigonometric Identity:**
\[
\cos^2 x - \sin^2 x = \cos(2x)
\]
\[
g'(x) = \ln x \cdot \cos(2x) + \frac{\sin x \cos x}{x}
\]
**Final Answer:**
\[
g'(x) = \ln x \cdot \cos(2x) + \frac{\sin x \cos x}{x}
\]
*Alternatively, the second term can be written using the double-angle identity \( \sin x \cos x = \frac{1}{2} \sin(2x) \):*
\[
g'(x) = \ln x \cdot \cos(2x) + \frac{1}{2} \cdot \frac{\sin(2x)}{x}
\]
---
#### **(iii) \( h(x) = (x^{2} - 2)^{x + 1} \)**
**Approach:**
This function is of the form \( y = u(x)^{v(x)} \). To differentiate such functions, it's convenient to take the natural logarithm of both sides and then differentiate implicitly.
**Step-by-Step Process:**
1. **Take Natural Logarithm of Both Sides:**
\[
\ln y = \ln \left( (x^{2} - 2)^{x + 1} \right) = (x + 1) \ln (x^{2} - 2)
\]
2. **Differentiate Both Sides with Respect to \( x \):**
\[
\frac{d}{dx} (\ln y) = \frac{d}{dx} \left( (x + 1) \ln (x^{2} - 2) \right )
\]
\[
\frac{1}{y} \cdot \frac{dy}{dx} = \frac{d}{dx} (x + 1) \cdot \ln (x^{2} - 2) + (x + 1) \cdot \frac{d}{dx} (\ln (x^{2} - 2))
\]
3. **Compute Each Derivative:**
- **Derivative of \( x + 1 \):**
\[
\frac{d}{dx} (x + 1) = 1
\]
- **Derivative of \( \ln (x^{2} - 2) \):**
\[
\frac{d}{dx} \ln (x^{2} - 2) = \frac{2x}{x^{2} - 2}
\]
4. **Substitute Back Into the Equation:**
\[
\frac{1}{y} \cdot \frac{dy}{dx} = 1 \cdot \ln (x^{2} - 2) + (x + 1) \cdot \frac{2x}{x^{2} - 2}
\]
\[
\frac{dy}{dx} = y \left( \ln (x^{2} - 2) + \frac{2x(x + 1)}{x^{2} - 2} \right )
\]
5. **Replace \( y \) with the Original Function \( h(x) \):**
\[
\frac{dy}{dx} = (x^{2} - 2)^{x + 1} \left( \ln (x^{2} - 2) + \frac{2x(x + 1)}{x^{2} - 2} \right )
\]
6. **Simplify if Desired:**
You can factor to combine the terms inside the parentheses, but it's generally acceptable to leave the answer in the above form.
**Final Answer:**
\[
h'(x) = (x^{2} - 2)^{x + 1} \left( \ln (x^{2} - 2) + \frac{2x(x + 1)}{x^{2} - 2} \right )
\]
*Alternatively, factor out \( \frac{1}{x^{2} - 2} \) inside the parentheses:*
\[
h'(x) = (x^{2} - 2)^{x + 1} \left( \ln (x^{2} - 2) + \frac{2x(x + 1)}{x^{2} - 2} \right ) = (x^{2} - 2)^{x + 1} \left( \ln (x^{2} - 2) + \frac{2x(x + 1)}{x^{2} - 2} \right )
\]
This form is already simplified appropriately.
---
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución