Pregunta
upstudy study bank question image url

QUESTION 4 Use the method of first principles to determine the derivative of \( f(x)=\frac{6}{x} \) Use an appropriate method off differentiation to determine the derivative of the following functions (sim- plify your answers as far as possible): (i) \( f(x)=\sqrt{x}+3^{x}-\frac{2}{x^{3}} \) (ii) \( g(x)=(\sin x)(\ln x)(\cos x) \) (iii) \( h(x)=\left(x^{2}-2\right)^{x+1} \)

Ask by Weber Fowler. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Part 1:** \[ f'(x) = -\frac{6}{x^2} \] **Part 2:** \[ f'(x) = \frac{1}{2\sqrt{x}} + 3^{x} \ln 3 + \frac{6}{x^4} \] \[ g'(x) = \ln x \cdot \cos(2x) + \frac{\sin x \cos x}{x} \] \[ h'(x) = (x^{2} - 2)^{x + 1} \left( \ln (x^{2} - 2) + \frac{2x(x + 1)}{x^{2} - 2} \right ) \]

Solución

Certainly! Let's tackle **Question 4** step by step. --- ### **Part 1: Using the Method of First Principles to Determine the Derivative of \( f(x) = \frac{6}{x} \)** **First Principles Definition:** The derivative of a function \( f(x) \) using first principles (the limit definition) is given by: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] **Applying to \( f(x) = \frac{6}{x} \):** 1. **Compute \( f(x+h) \):** \[ f(x+h) = \frac{6}{x + h} \] 2. **Set Up the Difference Quotient:** \[ f'(x) = \lim_{h \to 0} \frac{\frac{6}{x + h} - \frac{6}{x}}{h} \] 3. **Simplify the Numerator:** \[ \frac{6}{x + h} - \frac{6}{x} = 6 \left( \frac{1}{x + h} - \frac{1}{x} \right) = 6 \left( \frac{x - (x + h)}{x(x + h)} \right) = 6 \left( \frac{-h}{x(x + h)} \right) = -\frac{6h}{x(x + h)} \] 4. **Formulate the Difference Quotient:** \[ f'(x) = \lim_{h \to 0} \frac{-\frac{6h}{x(x + h)}}{h} = \lim_{h \to 0} -\frac{6}{x(x + h)} \] 5. **Take the Limit as \( h \to 0 \):** \[ f'(x) = -\frac{6}{x \cdot x} = -\frac{6}{x^2} \] **Final Answer:** \[ f'(x) = -\frac{6}{x^2} \] --- ### **Part 2: Using Appropriate Differentiation Methods** We'll now find the derivatives of the following functions using appropriate differentiation rules. #### **(i) \( f(x) = \sqrt{x} + 3^{x} - \frac{2}{x^{3}} \)** **Rewrite the Function for Easier Differentiation:** \[ f(x) = x^{1/2} + 3^{x} - 2x^{-3} \] **Differentiate Term by Term:** 1. **Derivative of \( x^{1/2} \):** \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] 2. **Derivative of \( 3^{x} \):** \[ \frac{d}{dx} \left( 3^{x} \right) = 3^{x} \ln 3 \] 3. **Derivative of \( -2x^{-3} \):** \[ \frac{d}{dx} \left( -2x^{-3} \right) = -2 \cdot (-3) x^{-4} = 6x^{-4} = \frac{6}{x^4} \] **Combine the Derivatives:** \[ f'(x) = \frac{1}{2\sqrt{x}} + 3^{x} \ln 3 + \frac{6}{x^4} \] **Final Answer:** \[ f'(x) = \frac{1}{2\sqrt{x}} + 3^{x} \ln 3 + \frac{6}{x^4} \] --- #### **(ii) \( g(x) = \sin x \cdot \ln x \cdot \cos x \)** **Simplify the Function:** Notice that \( \sin x \cdot \cos x = \frac{1}{2} \sin(2x) \), but for differentiation purposes, it's more straightforward to use the product rule for three functions. **Product Rule for Three Functions:** If \( g(x) = u(x) \cdot v(x) \cdot w(x) \), then: \[ g'(x) = u'(x) \cdot v(x) \cdot w(x) + u(x) \cdot v'(x) \cdot w(x) + u(x) \cdot v(x) \cdot w'(x) \] **Let:** \[ u(x) = \sin x, \quad v(x) = \ln x, \quad w(x) = \cos x \] **Compute the Derivatives:** 1. **\( u'(x) = \cos x \)** 2. **\( v'(x) = \frac{1}{x} \)** 3. **\( w'(x) = -\sin x \)** **Apply the Product Rule:** \[ g'(x) = (\cos x) \cdot (\ln x) \cdot (\cos x) + (\sin x) \cdot \left( \frac{1}{x} \right) \cdot (\cos x) + (\sin x) \cdot (\ln x) \cdot (-\sin x) \] **Simplify Each Term:** 1. **First Term:** \[ \cos x \cdot \ln x \cdot \cos x = \ln x \cdot \cos^2 x \] 2. **Second Term:** \[ \sin x \cdot \frac{1}{x} \cdot \cos x = \frac{\sin x \cos x}{x} \] 3. **Third Term:** \[ \sin x \cdot \ln x \cdot (-\sin x) = -\ln x \cdot \sin^2 x \] **Combine All Terms:** \[ g'(x) = \ln x \cdot \cos^2 x + \frac{\sin x \cos x}{x} - \ln x \cdot \sin^2 x \] **Factor Out \( \ln x \) from the First and Third Terms:** \[ g'(x) = \ln x ( \cos^2 x - \sin^2 x ) + \frac{\sin x \cos x}{x} \] **Use Trigonometric Identity:** \[ \cos^2 x - \sin^2 x = \cos(2x) \] \[ g'(x) = \ln x \cdot \cos(2x) + \frac{\sin x \cos x}{x} \] **Final Answer:** \[ g'(x) = \ln x \cdot \cos(2x) + \frac{\sin x \cos x}{x} \] *Alternatively, the second term can be written using the double-angle identity \( \sin x \cos x = \frac{1}{2} \sin(2x) \):* \[ g'(x) = \ln x \cdot \cos(2x) + \frac{1}{2} \cdot \frac{\sin(2x)}{x} \] --- #### **(iii) \( h(x) = (x^{2} - 2)^{x + 1} \)** **Approach:** This function is of the form \( y = u(x)^{v(x)} \). To differentiate such functions, it's convenient to take the natural logarithm of both sides and then differentiate implicitly. **Step-by-Step Process:** 1. **Take Natural Logarithm of Both Sides:** \[ \ln y = \ln \left( (x^{2} - 2)^{x + 1} \right) = (x + 1) \ln (x^{2} - 2) \] 2. **Differentiate Both Sides with Respect to \( x \):** \[ \frac{d}{dx} (\ln y) = \frac{d}{dx} \left( (x + 1) \ln (x^{2} - 2) \right ) \] \[ \frac{1}{y} \cdot \frac{dy}{dx} = \frac{d}{dx} (x + 1) \cdot \ln (x^{2} - 2) + (x + 1) \cdot \frac{d}{dx} (\ln (x^{2} - 2)) \] 3. **Compute Each Derivative:** - **Derivative of \( x + 1 \):** \[ \frac{d}{dx} (x + 1) = 1 \] - **Derivative of \( \ln (x^{2} - 2) \):** \[ \frac{d}{dx} \ln (x^{2} - 2) = \frac{2x}{x^{2} - 2} \] 4. **Substitute Back Into the Equation:** \[ \frac{1}{y} \cdot \frac{dy}{dx} = 1 \cdot \ln (x^{2} - 2) + (x + 1) \cdot \frac{2x}{x^{2} - 2} \] \[ \frac{dy}{dx} = y \left( \ln (x^{2} - 2) + \frac{2x(x + 1)}{x^{2} - 2} \right ) \] 5. **Replace \( y \) with the Original Function \( h(x) \):** \[ \frac{dy}{dx} = (x^{2} - 2)^{x + 1} \left( \ln (x^{2} - 2) + \frac{2x(x + 1)}{x^{2} - 2} \right ) \] 6. **Simplify if Desired:** You can factor to combine the terms inside the parentheses, but it's generally acceptable to leave the answer in the above form. **Final Answer:** \[ h'(x) = (x^{2} - 2)^{x + 1} \left( \ln (x^{2} - 2) + \frac{2x(x + 1)}{x^{2} - 2} \right ) \] *Alternatively, factor out \( \frac{1}{x^{2} - 2} \) inside the parentheses:* \[ h'(x) = (x^{2} - 2)^{x + 1} \left( \ln (x^{2} - 2) + \frac{2x(x + 1)}{x^{2} - 2} \right ) = (x^{2} - 2)^{x + 1} \left( \ln (x^{2} - 2) + \frac{2x(x + 1)}{x^{2} - 2} \right ) \] This form is already simplified appropriately. ---

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the derivative of \( f(x)=\frac{6}{x} \) using first principles, we start with the definition of the derivative: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] Calculating \( f(x+h) \): \[ f(x+h) = \frac{6}{x+h} \] Now, substituting into our limit gives us: \[ f'(x) = \lim_{h \to 0} \frac{\frac{6}{x+h} - \frac{6}{x}}{h} = \lim_{h \to 0} \frac{6x - 6(x+h)}{h \cdot x(x+h)} = \lim_{h \to 0} \frac{-6h}{h \cdot x(x+h)} \] Canceling \( h \) (assuming \( h \neq 0 \)), we simplify to: \[ f'(x) = \lim_{h \to 0} \frac{-6}{x(x+h)} \] Taking the limit as \( h \to 0 \) yields: \[ f'(x) = \frac{-6}{x^2} \] Next, we'll use differentiation rules to find the derivatives of the given functions. (i) For \( f(x)=\sqrt{x}+3^{x}-\frac{2}{x^{3}} \): The derivative is: \[ f'(x) = \frac{1}{2\sqrt{x}} + 3^x \ln(3) + \frac{6}{x^4} \] (ii) For \( g(x)=(\sin x)(\ln x)(\cos x) \): Using the product rule: \[ g'(x) = (\sin x \cdot \cos x \cdot \frac{1}{x}) + (\ln x \cdot \cos x \cdot \cos x) + (\sin x \cdot \ln x \cdot (-\sin x)) \] This simplifies to: \[ g'(x) = \sin x \cdot \cos x \cdot \frac{1}{x} + \ln x \cdot (-\sin^2 x + \cos^2 x) \] (iii) For \( h(x)=\left(x^{2}-2\right)^{x+1} \): Using logarithmic differentiation: First, take the natural log: \[ \ln h = (x+1) \ln(x^2-2) \] Differentiate using product and chain rules: \[ \frac{h'}{h} = \ln(x^2-2) + (x+1) \cdot \frac{2x}{x^2-2} \] Thus, \[ h' = h \cdot \left( \ln(x^2-2) + \frac{(x+1) \cdot 2x}{x^2-2} \right) \] This expression can be simplified further if needed.

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad