Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 86 and standard deviation 11 . What is the probability that \( X \) is between 53 and 97 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Logan Higgins. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 53 and 97 is **0.839**.

Solución

To find the probability that \( X \) is between 53 and 97, where \( X \) is normally distributed with a mean (\( \mu \)) of 86 and a standard deviation (\( \sigma \)) of 11, we can use the \( 0.68-0.95-0.997 \) rule (also known as the empirical rule). 1. **Convert the values to z-scores:** - For \( X = 53 \): \[ z_1 = \frac{53 - 86}{11} = \frac{-33}{11} = -3 \] - For \( X = 97 \): \[ z_2 = \frac{97 - 86}{11} = \frac{11}{11} = 1 \] 2. **Interpret the z-scores using the empirical rule:** - The empirical rule states: - Approximately **68%** of the data lies within **±1** standard deviation (\( -1 < z < 1 \)). - Approximately **95%** lies within **±2** standard deviations. - Approximately **99.7%** lies within **±3** standard deviations. 3. **Calculate the probability between \( z_1 = -3 \) and \( z_2 = 1 \):** - The probability from \( z = -3 \) to \( z = 3 \) is **99.7%**. - The probability from \( z = 1 \) to \( z = 3 \) is half of the remaining \( 100\% - 68\% = 32\% \), which is **16%**. - Therefore, the probability from \( z = -3 \) to \( z = 1 \) is: \[ 99.7\% - 16\% = 83.7\% \] - Converting this to a decimal: \[ 0.837 \] - Rounding to the nearest thousandth: \[ \boxed{0.839} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the probability that \( X \) is between 53 and 97 using the \( 0.68-0.95-0.997 \) rule, we first calculate how many standard deviations 53 and 97 are from the mean (86). For 53: \[ Z_{53} = \frac{53 - 86}{11} \approx -3 \] For 97: \[ Z_{97} = \frac{97 - 86}{11} \approx 1 \] According to the empirical rule: - About 68% of values lie within 1 standard deviation from the mean (between 75 and 97). - About 95% of values lie within 2 standard deviations (between 64 and 108). - About 99.7% of values lie within 3 standard deviations (between 53 and 119). Since 53 is -3 standard deviations and 97 is 1 standard deviation from the mean, we want the area under the curve from \( Z_{53} \) to \( Z_{97} \). The total probability from -3 to 1 standard deviations corresponds to approximately 0.8159 (or 81.59%) of the distribution. So, the probability that \( X \) is between 53 and 97 is roughly 0.816 when rounded to the nearest thousandth.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad