Pregunta
upstudy study bank question image url

\begin{tabular}{l}\hline ACTIVITIESIASSESSMENTS \\ \hline - Classwork/Homework \\ 1. Consider the sequence: \( 12 ; 4 ; 14 ; 7 ; 18 ; 10 ; \ldots \) \\ 1.1 Write down the next TWO terms if the given pattern continues. \\ 1.2 Calculate the value of the \( 50^{\text {th }} \) term of the sequence. \\ 1.3 Write down the value of \( 131^{\text {th }} \) term of the sequence. \\ 2. The following sequence is a combination of an arithmetic and a geometric sequence: \\ \( 3 ; 3 ; 9 ; 6 ; 15 ; 12 ; \ldots \) \\ 2.1 Write down the next TWO terms. \\ 2.2 Calculate \( T_{22}-T_{21} \). \\ 2.3 Prove that ALL the terms of this infinite sequence will be divisible by 3 . \end{tabular}

Ask by Tucker Edwards. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Sequence Analysis:** 1. **Next TWO Terms:** 24 and 13 2. **50th Term:** 76 3. **131st Term:** 4302 **Combined Sequence:** 1. **Next TWO Terms:** 21 and 24 2. **\( T_{22} - T_{21} \):** 3009 3. **Proof:** All terms are divisible by 3.

Solución

Sure, let's work through each of the problems step by step. --- ## **1. Sequence Analysis** Given Sequence: **12 ; 4 ; 14 ; 7 ; 18 ; 10 ; …** ### **1.1 Next TWO Terms** **Pattern Identification:** - **Odd-Positioned Terms (1st, 3rd, 5th, ...):** 12, 14, 18, ... - **Differences:** +2 (14 - 12), +4 (18 - 14), ... - **Pattern:** The difference increases by 2 each time. - **Next Difference:** +6 - **Next Odd Term:** 18 + 6 = **24** - **Even-Positioned Terms (2nd, 4th, 6th, ...):** 4, 7, 10, ... - **Differences:** +3 each time - **Next Even Term:** 10 + 3 = **13** **Next TWO Terms:** **24** and **13** --- ### **1.2 Value of the \( 50^{\text{th}} \) Term** **Determining the Position:** - **50 is Even**, so it follows the even-positioned pattern. **Even-Term Formula:** \[ a_n = 3k + 1 \] where \( k = \frac{n}{2} \) \[ k = \frac{50}{2} = 25 \] \[ a_{50} = 3 \times 25 + 1 = 75 + 1 = 76 \] **\( 50^{\text{th}} \) Term:** **76** --- ### **1.3 Value of the \( 131^{\text{th}} \) Term** **Determining the Position:** - **131 is Odd**, so it follows the odd-positioned pattern. **Odd-Term Formula:** \[ a_n = \frac{n^2 + 47}{4} \] \[ a_{131} = \frac{131^2 + 47}{4} \] \[ = \frac{17161 + 47}{4} \] \[ = \frac{17208}{4} \] \[ = 4302 \] **\( 131^{\text{th}} \) Term:** **4302** --- ## **2. Combined Arithmetic and Geometric Sequence** Given Sequence: **3 ; 3 ; 9 ; 6 ; 15 ; 12 ; …** ### **2.1 Next TWO Terms** **Pattern Identification:** - **Odd-Positioned Terms (1st, 3rd, 5th, ...):** 3, 9, 15, ... - **Differences:** +6 each time - **Next Odd Term:** 15 + 6 = **21** - **Even-Positioned Terms (2nd, 4th, 6th, ...):** 3, 6, 12, ... - **Pattern:** Each term is multiplied by 2 - **Next Even Term:** 12 × 2 = **24** **Next TWO Terms:** **21** and **24** --- ### **2.2 Calculate \( T_{22} - T_{21} \)** **Determining the Terms:** - **\( T_{21} \) (Odd Position):** \[ a_k = 3 + 6(k - 1) \] \[ k = \frac{21 + 1}{2} = 11 \] \[ a_{21} = 3 + 6(11 - 1) = 3 + 60 = 63 \] - **\( T_{22} \) (Even Position):** \[ a_k = 3 \times 2^{k-1} \] \[ k = \frac{22}{2} = 11 \] \[ a_{22} = 3 \times 2^{10} = 3 \times 1024 = 3072 \] **Calculation:** \[ T_{22} - T_{21} = 3072 - 63 = 3009 \] **Result:** **3009** --- ### **2.3 Proof that ALL Terms are Divisible by 3** **Odd-Positioned Terms:** - **Formula:** \[ a_k = 3 + 6(k - 1) \] \[ = 3(1 + 2(k - 1)) \] - Clearly, \( a_k \) is a multiple of 3. **Even-Positioned Terms:** - **Formula:** \[ a_k = 3 \times 2^{k-1} \] - Regardless of the value of \( k \), \( a_k \) is \( 3 \) multiplied by an integer \( 2^{k-1} \), making it a multiple of 3. **Conclusion:** All terms, whether odd or even-positioned, are multiples of **3**. --- ## **Summary of Answers** 1. **Sequence 12; 4; 14; 7; 18; 10; …** - **1.1 Next TWO Terms:** 24 and 13 - **1.2 \( 50^{\text{th}} \) Term:** 76 - **1.3 \( 131^{\text{th}} \) Term:** 4302 2. **Sequence 3; 3; 9; 6; 15; 12; …** - **2.1 Next TWO Terms:** 21 and 24 - **2.2 \( T_{22} - T_{21} \):** 3009 - **2.3 Proof of Divisibility by 3:** All terms are divisible by 3. --- If you have any further questions or need additional explanations, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

In the first sequence \( 12, 4, 14, 7, 18, 10, \ldots \), the pattern alternates between two processes: subtracting 8 and then adding 2. Continuing this pattern gives us the next two terms: \( 22 \) (from \( 18 + 4 \)) and \( 12 \) (from \( 10 + 2 \)). For the \( 50^{\text{th}} \) term, if we observe that this sequence effectively alternates between a linear growth pattern, we can derive a formula that leads to the \( 50^{\text{th}} \) term being \( 104 \), while the \( 131^{\text{th}} \) term is calculated to be \( 212 \). Now, focusing on the second sequence \( 3, 3, 9, 6, 15, 12, \ldots \), we notice that every odd index corresponds to a geometric sequence (multiplied by \( 3 \)), and every even index is an arithmetic sequence. By extrapolating this, the next two terms will be \( 24 \) (from \( 15 + 9 \)) and \( 21 \) (from \( 12 + 9 \)). To prove that all terms are divisible by \( 3 \), since both components of the sequence (the geometric and arithmetic parts) are multiples of \( 3 \), every term in this infinite sequence is indeed divisible by \( 3 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad