Pregunta
Find the partial derivative of (5 Marks) \( f(x, y)=e^{-t x} \cos (\pi y) \) Where \( t \) is a constant. a) \( \frac{\partial f}{\partial x}= \) b) \( \frac{\partial f}{\partial y}=\square \) Hint: use pi in place of \( \pi \) in the answer
Ask by Stewart Barber. in Kenya
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
a) \( \frac{\partial f}{\partial x} = -t e^{-t x} \cos(\pi y) \)
b) \( \frac{\partial f}{\partial y} = -e^{-t x} \pi \sin(\pi y) \)
Solución
To find the partial derivatives of the function \( f(x, y) = e^{-t x} \cos(\pi y) \), we'll differentiate with respect to each variable while treating the other variable as a constant.
### a) Partial derivative with respect to \( x \):
\[
\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left( e^{-t x} \cos(\pi y) \right)
\]
Since \( \cos(\pi y) \) is treated as a constant when differentiating with respect to \( x \):
\[
\frac{\partial f}{\partial x} = -t e^{-t x} \cos(\pi y)
\]
### b) Partial derivative with respect to \( y \):
\[
\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left( e^{-t x} \cos(\pi y) \right)
\]
Here, \( e^{-t x} \) is treated as a constant when differentiating with respect to \( y \):
\[
\frac{\partial f}{\partial y} = -e^{-t x} \pi \sin(\pi y)
\]
**Final Answers:**
- **a)** \( \frac{\partial f}{\partial x} = -t\, e^{-t x} \cos(\pi y) \)
- **b)** \( \frac{\partial f}{\partial y} = -e^{-t x} \pi \sin(\pi y) \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To find the partial derivatives of the function \( f(x, y) = e^{-t x} \cos(\pi y) \): a) The partial derivative with respect to \( x \) is obtained by treating \( y \) as a constant: \[ \frac{\partial f}{\partial x} = \frac{\partial}{\partial x}(e^{-t x} \cos(\pi y)) = -t e^{-t x} \cos(\pi y) \] b) The partial derivative with respect to \( y \) is obtained by treating \( x \) as a constant: \[ \frac{\partial f}{\partial y} = \frac{\partial}{\partial y}(e^{-t x} \cos(\pi y)) = -\pi e^{-t x} \sin(\pi y) \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium