Pregunta
upstudy study bank question image url

The equation \( x^{2}+5 x-17=0 \) has two solutions \( A \) and \( B \) where \( A
Ask by Washington Bates. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions are \( A = \frac{-5 - \sqrt{93}}{2} \) and \( B = \frac{-5 + \sqrt{93}}{2} \), where \( A < B \).

Solución

To find the solutions \( A \) and \( B \) of the quadratic equation \( x^{2} + 5x - 17 = 0 \) where \( A < B \), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \] **Given:** - \( a = 1 \) - \( b = 5 \) - \( c = -17 \) **Step 1: Calculate the discriminant (\( \Delta \))** \[ \Delta = b^{2} - 4ac = (5)^{2} - 4(1)(-17) = 25 + 68 = 93 \] **Step 2: Apply the quadratic formula** \[ x = \frac{-5 \pm \sqrt{93}}{2 \times 1} = \frac{-5 \pm \sqrt{93}}{2} \] **Step 3: Identify \( A \) and \( B \) with \( A < B \)** \[ A = \frac{-5 - \sqrt{93}}{2} \] \[ B = \frac{-5 + \sqrt{93}}{2} \] **Approximate Numerical Values:** To get a better understanding of the solutions, let's approximate the values: \[ \sqrt{93} \approx 9.6437 \] \[ A \approx \frac{-5 - 9.6437}{2} = \frac{-14.6437}{2} \approx -7.32185 \] \[ B \approx \frac{-5 + 9.6437}{2} = \frac{4.6437}{2} \approx 2.32185 \] **Summary:** - \( A = \frac{-5 - \sqrt{93}}{2} \approx -7.32 \) - \( B = \frac{-5 + \sqrt{93}}{2} \approx 2.32 \) These are the two solutions to the equation \( x^{2} + 5x - 17 = 0 \) with \( A < B \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve for \( A \) and \( B \), we can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \). Here, \( a=1 \), \( b=5 \), and \( c=-17 \). Plugging in these values, we find the discriminant \( b^2 - 4ac = 5^2 - 4(1)(-17) = 25 + 68 = 93 \). Thus, the two solutions are: \[ x = \frac{-5 \pm \sqrt{93}}{2} \] Calculating the approximate values, we find \( A \approx -8.3 \) and \( B \approx 3.3 \). Finding the roots of quadratic equations isn't just a classroom exercise; it has real-life applications! For instance, engineers use these types of equations to determine optimal dimensions for structures, where the area or volume is maximized or minimized—much like how your favorite pizza places ensure they give you the most delicious slice possible, calculated to perfection! A common mistake in solving these equations is skipping over the step of checking the discriminant. If the discriminant is negative, the solutions become complex numbers, which may trip you up if you're expecting real solutions. Always take a moment to calculate that discriminant first; it'll save you from surprises and keep those math mistakes at bay!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad