Pregunta
upstudy study bank question image url

Let \( f(x)=|x| \). Find a formula for a function \( g \) whose graph is obtained from \( f \) after the following sequence of t;onsformations: (1) Shift left 3 units. (2) Stretch vertically by a facto of 2 . (3) Reflect across the \( x \)-axis. (4) Shift down 1 unit. \( g(x)=-2|x+3|-1 \) \( g(x)=-2|x-3|-1 \) \( g(x)=2|-x+3|-1 \) \( g(x)=-\frac{1}{2}|x+3|-1 \)

Ask by Bush Williams. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( g(x) = -2|x + 3| - 1 \)

Solución

To determine the correct formula for the function \( g(x) \) after the given sequence of transformations applied to \( f(x) = |x| \), let's analyze each transformation step by step: 1. **Shift Left 3 Units:** - Shifting a function \( f(x) \) to the left by 3 units results in \( f(x + 3) \). - Therefore, \( f(x) = |x| \) becomes \( |x + 3| \). 2. **Stretch Vertically by a Factor of 2:** - Stretching vertically by a factor of 2 multiplies the function by 2. - Thus, \( |x + 3| \) becomes \( 2|x + 3| \). 3. **Reflect Across the \( x \)-Axis:** - Reflecting across the \( x \)-axis changes the sign of the function. - Therefore, \( 2|x + 3| \) becomes \( -2|x + 3| \). 4. **Shift Down 1 Unit:** - Shifting the function down by 1 unit subtracts 1 from the entire function. - So, \( -2|x + 3| \) becomes \( -2|x + 3| - 1 \). Combining all these transformations, the final function \( g(x) \) is: \[ g(x) = -2|x + 3| - 1 \] **Answer:** \( g(x)=-2|x+3|-1 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the function \( g \) based on the transformations applied to \( f(x) = |x| \): 1. **Shift left 3 units**: This changes \( f(x) \) to \( f(x + 3) = |x + 3| \). 2. **Stretch vertically by a factor of 2**: This transforms it to \( 2f(x + 3) = 2|x + 3| \). 3. **Reflect across the \( x \)-axis**: Now we have \( -2|x + 3| \). 4. **Shift down 1 unit**: Finally, this leads to \( g(x) = -2|x + 3| - 1 \). Hence, the correct formula for \( g \) is \( g(x) = -2|x + 3| - 1 \). One might wonder why these transformations work as they do. The absolute value graph, with its characteristic V-shape, responds predictably to such shifts and stretches. It's like giving the graph a "makeover" that makes it reflect its new position and orientation in the coordinate plane! If you want to experiment further with transformations, consider graphing \( f(x) = |x| \) and applying transformations step by step using graphing tools. It’s a fun way to visualize how each change affects the final graph!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad