Find the domain of the following function. \( g(x)=\frac{1}{\sqrt{13+x}} \) The domain is \( \square \). (Type your answer in interval notation.)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the domain of the function \( g(x)=\frac{1}{\sqrt{13+x}} \), we must ensure that the expression under the square root is positive since square roots of negative numbers are not defined in the realm of real numbers. Therefore, we have: 1. \( 13+x > 0 \) leads to \( x > -13 \). 2. We also need to ensure that the entire denominator does not equal zero, which means \( \sqrt{13+x} \neq 0 \). This further reinforces the condition \( 13+x > 0 \). So, the solution to the inequality is \( x > -13 \). In interval notation, the domain of \( g(x) \) is \( (-13, \infty) \).