Pregunta
upstudy study bank question image url

Write down the next term in each of the following patterns: \( 3.1 .11 ; 2 ; 4 ; 2 ; 9 ; 2 ; 16 ; 2 ; 25 ; 2 ; \ldots \) \( 3.1 .2 \frac{2+1}{3^{2}-3} ; \frac{3+1}{4^{2}-3} ; \frac{4+1}{5^{2}-3} ; \frac{5+1}{6^{2}-3} ; \ldots \ldots \)

Ask by Delgado Hampton. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The next term in the first pattern is 36. The next term in the second pattern is 7/46.

Solución

Let's analyze each pattern step by step to find the next term. ### Pattern 1: \( 3.1, 0.11, 2, 4, 2, 9, 2, 16, 2, 25, 2, \ldots \) 1. **Identify the sequence:** - The sequence alternates between two types of terms: one set of numbers and the number 2. - The first set of numbers is: \( 3.1, 0.11, 2, 4, 9, 16, 25 \). - The second set is consistently \( 2 \). 2. **Analyze the first set:** - The first set of numbers appears to be perfect squares: - \( 3.1 \) does not fit the pattern. - \( 0.11 \) does not fit the pattern. - \( 2 = 1^2 + 1 \) - \( 4 = 2^2 \) - \( 9 = 3^2 \) - \( 16 = 4^2 \) - \( 25 = 5^2 \) 3. **Next term in the first set:** - Following the pattern of perfect squares, the next term after \( 25 \) (which is \( 5^2 \)) would be \( 6^2 = 36 \). 4. **Next term in the overall sequence:** - Since the sequence alternates, the next term after \( 25 \) (which is followed by \( 2 \)) will be \( 36 \). ### Conclusion for Pattern 1: The next term is \( 36 \). --- ### Pattern 2: \( 3.1, 0.2, \frac{2+1}{3^{2}-3}, \frac{3+1}{4^{2}-3}, \frac{4+1}{5^{2}-3}, \frac{5+1}{6^{2}-3}, \ldots \) 1. **Identify the sequence:** - The terms are of the form \( \frac{n+1}{(n+2)^2 - 3} \) where \( n \) starts from \( 2 \). 2. **Analyze the terms:** - For \( n = 2 \): \( \frac{2+1}{3^2 - 3} = \frac{3}{6} = 0.5 \) - For \( n = 3 \): \( \frac{3+1}{4^2 - 3} = \frac{4}{13} \) - For \( n = 4 \): \( \frac{4+1}{5^2 - 3} = \frac{5}{22} \) - For \( n = 5 \): \( \frac{5+1}{6^2 - 3} = \frac{6}{33} \) 3. **Next term in the sequence:** - For \( n = 6 \): \[ \frac{6+1}{7^2 - 3} = \frac{7}{49 - 3} = \frac{7}{46} \] ### Conclusion for Pattern 2: The next term is \( \frac{7}{46} \). --- ### Final Answers: 1. The next term in the first pattern is \( 36 \). 2. The next term in the second pattern is \( \frac{7}{46} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

In the first sequence, the pattern alternates between a number and 2. The numbers being listed are the squares of consecutive integers: \(1^2\), \(2^2\), \(3^2\), \(4^2\), and so on. Thus, the next term after \(25\) (which is \(5^2\)) will be \(2\), followed by \(36\) (which is \(6^2\)). Therefore, the next term is \(2\). For the second sequence, it appears that we are incrementing the numerator while keeping the denominator consistent with the squares of consecutive integers minus 3. The last term given is \(\frac{5+1}{6^{2}-3} = \frac{6}{33}\). For the next term, substituting \(n=6\) gives \(\frac{6+1}{7^{2}-3} = \frac{7}{49-3} = \frac{7}{46}\). So, the next term is \(\frac{7}{46}\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad