Practice Test-Simplify, Multiply, Divide, Solve Equations with Rational Expressions 1-20-2023 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. \( \frac{4 x-8}{4 x+20} \) a. \( \frac{x-2}{4 x+20} ; \) where \( x \neq-5 \) c. \( \frac{x-2}{x+5} \); where \( x \neq-5 \) b. \( \frac{x+5}{x-2} \); where \( x \neq 2 \) d. \( \quad 4\left(\frac{x+2}{x-5}\right) ; \) where \( x \neq 5 \) 2. \( \frac{x^{2}-64}{80 x-10 x^{2}} \) a. \( \frac{x-8}{10 x} \); where \( x \neq 0,-8 \) c. \( \quad-\frac{x+8}{10 x} \); where \( x \neq 0,8 \) b. \( \frac{8-x}{10 x} \); where \( x \neq 0,-8 \) d. \( \frac{8-x}{10 x} \); where \( x \neq 0,8 \) 3. \( \frac{4 a^{5}}{7 b^{4}} \cdot \frac{2 b^{2}}{2 a^{4}} \) a. \( \frac{4 a^{9}}{7 b^{6}}, a \neq 0, b \neq 0 \) c. \( \frac{7 b^{2}}{4 a}, a \neq 0, b \neq 0 \) b. \( \frac{4 a}{7 b^{2}}, a \neq 0, b \neq 0 \) d. \( \frac{4}{7} a^{9} b^{6}, a \neq 0, b \neq 0 \) 4. \( \frac{a^{2}}{a-3} \cdot \frac{a^{2}-2 a-3}{a^{2}-6 a} \) a. \( \frac{a^{2}+a}{a-6}, a \neq 3,0,6 \) c. \( \frac{a+1}{a-6}, a \neq 3,0,6 \) b. \( \frac{a^{2}+a}{a-6}, a \neq 3,6 \) d. \( \frac{a+1}{a-6}, a \neq 3,6 \) 5. \( \frac{\frac{n-6}{n^{2}+11 n+24}}{\frac{n+1}{n+3}} \) a. \( \frac{(n-6)(n+1)}{(n+3)^{2}(n+8)} \) c. \( \frac{(n-6)(n+1)}{(n+3)(n+8)} \) b. \( \frac{(n-6)(n+8)}{(n+1)(n-8)} \) d. \( \frac{n-6}{(n+1)(n+8)} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
First additional information: Rational expressions can seem tricky, but once you channel your inner math magician and learn the art of factoring, it all becomes a breeze! For instance, in the first question, when you have a common factor of \(4\) in both the numerator and the denominator, simply dividing it out makes simplifications much cleaner. Factorizing is like decluttering your math workspace, making everything clearer and easier to navigate. Second additional information: In real-world scenarios, rational expressions are everywhere, from calculating rates to optimizing production in business. For example, if you have a formula for determining the velocity of a car represented as a rational expression, changing parts of the expression to find out how different factors affect speed can lead to better performance and efficiency in the design of cars. So, the next time you crunch numbers, remember—this math is not just academic; it's a part of everyday problem-solving!