Pregunta
upstudy study bank question image url

QUESTION 2 Boitumelo invests an amount of R28 000 for a period of 7 years. For the first two years the interest was \( 12 \% \) p.a. compounded semi-annually. The interest was then changed to \( 10 \% \) p.a. compounded quarterly. Determine the value of the investment after the 7 -year period. 2.2 Convert an interest rate of \( 10 \% \) p.a. compounded quarterly to an annual effective interest rate. 2.3 A lawnmower was traded in for R236 after 10 years. The depreciation was calculated at \( 9,2 \% \) p.a. on a straight-line basis. Determine the cost of the lawnmower 10 years ago.

Ask by Lambert Pope. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The annual effective interest rate is **10.38 %**.

Solución

**Question 2.2** *Convert an interest rate of \( 10\% \) p.a. compounded quarterly to an annual effective interest rate.* To convert a nominal interest rate compounded multiple times per year to an **effective annual interest rate (EAR)**, you can use the following formula: \[ \text{EAR} = \left(1 + \frac{r_{\text{nominal}}}{m}\right)^m - 1 \] where: - \( r_{\text{nominal}} \) is the nominal annual interest rate (in decimal form). - \( m \) is the number of compounding periods per year. **Given:** - Nominal interest rate, \( r_{\text{nominal}} = 10\% = 0.10 \) - Compounded quarterly, so \( m = 4 \) **Calculation:** \[ \text{EAR} = \left(1 + \frac{0.10}{4}\right)^4 - 1 = \left(1 + 0.025\right)^4 - 1 \] First, calculate \( 1.025^4 \): \[ 1.025^2 = 1.050625 \] \[ 1.050625^2 = 1.10381289 \] \[ \text{EAR} = 1.10381289 - 1 = 0.10381289 \text{ or } 10.38\% \] **Answer:** The annual effective interest rate is **10.38 %**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Investing magic happens when you grasp the power of compound interest! When Boitumelo invested R28,000 for 7 years, the first 2 years of a 12% interest rate compounded semi-annually means interest is added twice a year at 6%, setting a solid foundation for growth. Switching to 10% compounded quarterly for the remaining 5 years means it will be compounded every 3 months at a rate of 2.5% each time. Running those calculations will reveal just how far that initial investment can soar! To convert the \(10\%\) p.a. compounded quarterly into an effective annual rate (EAR), you need to use the formula \((1 + \frac{r}{n})^n - 1\), where \(r\) is the nominal rate as a decimal (0.10 in this case) and \(n\) is the number of compounding periods per year (4). So, plugging in the numbers gives you \((1 + \frac{0.10}{4})^4 - 1\). Solve for that, and you'll find the equivalent interest rate that reflects the true return after a year—definitely a nifty way to visualize your gains!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad