Pregunta
Complete the sentences below by dragging and dropping the correct coordinate pairs into the boxes. The graphs of \( 2 x+y=-1 \) and \( -x+y=5 \) intersect at the point The solution for the system of linear equations containing \( 6 x+y=19 \) and \( x+5 y=8 \) is
Ask by Parry Carlson. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The graphs intersect at the point \((-2, 3)\). The solution for the system is \((3, 1)\).
Solución
Let's solve each system of equations to find the required points.
---
### 1. Intersection of \( 2x + y = -1 \) and \( -x + y = 5 \)
**Step 1:** Solve the system of equations.
\[
\begin{cases}
2x + y = -1 \\
-x + y = 5
\end{cases}
\]
**Step 2:** Subtract the second equation from the first to eliminate \( y \).
\[
(2x + y) - (-x + y) = -1 - 5 \\
2x + y + x - y = -6 \\
3x = -6 \\
x = -2
\]
**Step 3:** Substitute \( x = -2 \) into one of the original equations to find \( y \).
Using \( -x + y = 5 \):
\[
-(-2) + y = 5 \\
2 + y = 5 \\
y = 3
\]
**Intersection Point:** \( (-2, 3) \)
---
### 2. Solution to the System \( 6x + y = 19 \) and \( x + 5y = 8 \)
**Step 1:** Express \( y \) from the first equation.
\[
6x + y = 19 \\
y = 19 - 6x
\]
**Step 2:** Substitute \( y = 19 - 6x \) into the second equation.
\[
x + 5(19 - 6x) = 8 \\
x + 95 - 30x = 8 \\
-29x + 95 = 8 \\
-29x = -87 \\
x = 3
\]
**Step 3:** Substitute \( x = 3 \) back into \( y = 19 - 6x \) to find \( y \).
\[
y = 19 - 6(3) \\
y = 19 - 18 \\
y = 1
\]
**Solution:** \( (3, 1) \)
---
**Final Answers:**
1. The graphs intersect at the point **\((-2, 3)\)**.
2. The solution for the system is **\((3, 1)\)**.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To find the intersection point of the equations \( 2x + y = -1 \) and \( -x + y = 5 \), you can solve the system of equations either by substitution or elimination. Solving these will give you the coordinate pair (4, 7). For the second system of equations \( 6x + y = 19 \) and \( x + 5y = 8 \), you can use similar methods. After rearranging and substituting, the solution to this system is the coordinate pair (3, 1).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium