Responder
Aquí están las soluciones a las multiplicaciones algebraicas:
1. \( (2x)(7x + 4) = 14x^{2} + 8x \)
2. \( (5x^{3}y^{3})(x^{2} - 3xy + y) = 5x^{5}y^{3} - 15x^{4}y^{4} + 5y^{4}x^{3} \)
3. \( (6x^{5}y^{6}z')(3x^{2}y'z') = 18x^{7}y^{6} \)
4. \( \left(\frac{2x^{4}y^{2}}{3}\right)\left(\frac{3x^{2}}{2} + x^{2} - \frac{xy}{3} - \frac{2x}{5} + 2x + 5y + 12\right) = \frac{75x^{6}y^{2} - 10x^{5}y^{3} + 48x^{5}y^{2} + 150x^{4}y^{3} + 360x^{4}y^{2}}{45} \)
5. \( \left(\frac{2x^{3}y^{1/2}}{3}\right)\left(\frac{3x^{2}z^{4}}{5}\right) = \frac{2x^{5}\sqrt{y} \times z^{4}}{5} \)
6. \( (x - 3)(x^{2} + 3x + 9) = x^{3} - 27 \)
Si tienes más preguntas o necesitas aclaraciones, no dudes en preguntar.
Solución
Simplify the expression by following steps:
- step0: Simplify the product:
\(\left(x-3\right)\left(x^{2}+3x+9\right)\)
- step1: Simplify the product:
\(x^{3}-27\)
Expand the expression \( (2 x)(7 x+4) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(2x\right)\left(7x+4\right)\)
- step1: Multiply the terms:
\(2x\left(7x+4\right)\)
- step2: Apply the distributive property:
\(2x\times 7x+2x\times 4\)
- step3: Multiply the terms:
\(14x^{2}+8x\)
Expand the expression \( (6 x^{5} y^{6} z')(3 x^{2} y' z') \)
Simplify the expression by following steps:
- step0: Simplify:
\(\left(6x^{5}y^{6}\times \left(z\right)^{\prime}\right)\left(3x^{2}\times \left(y\right)^{\prime}\times \left(z\right)^{\prime}\right)\)
- step1: Find the derivative:
\(\left(6x^{5}y^{6}\times 1\right)\left(3x^{2}\times \left(y\right)^{\prime}\times \left(z\right)^{\prime}\right)\)
- step2: Calculate:
\(6x^{5}y^{6}\left(3x^{2}\times \left(y\right)^{\prime}\times \left(z\right)^{\prime}\right)\)
- step3: Find the derivative:
\(6x^{5}y^{6}\left(3x^{2}\times 1\times \left(z\right)^{\prime}\right)\)
- step4: Find the derivative:
\(6x^{5}y^{6}\left(3x^{2}\times 1\times 1\right)\)
- step5: Multiply the terms:
\(6x^{5}y^{6}\times 3x^{2}\)
- step6: Multiply the numbers:
\(18x^{5}y^{6}x^{2}\)
- step7: Multiply the terms:
\(18x^{7}y^{6}\)
Expand the expression \( (5 x^{3} y^{3})(x^{2}-3 x y+y) \)
Simplify the expression by following steps:
- step0: Calculate:
\(\left(5x^{3}y^{3}\right)\left(x^{2}-3xy+y\right)\)
- step1: Calculate:
\(5x^{3}y^{3}\left(x^{2}-3xy+y\right)\)
- step2: Rewrite the expression:
\(5\left(x^{2}-3xy+y\right)x^{3}y^{3}\)
- step3: Rearrange the terms:
\(\left(x^{2}-3xy+y\right)\times 5x^{3}y^{3}\)
- step4: Apply the distributive property:
\(x^{2}\times 5x^{3}y^{3}-3xy\times 5x^{3}y^{3}+y\times 5x^{3}y^{3}\)
- step5: Multiply the terms:
\(5x^{5}y^{3}-15x^{4}y^{4}+5y^{4}x^{3}\)
Expand the expression \( (\frac{2 x^{3} y^{1 / 2}}{3})(\frac{3 x^{2} z^{4}}{5}) \)
Simplify the expression by following steps:
- step0: Simplify:
\(\left(\frac{2x^{3}y^{\frac{1}{2}}}{3}\right)\left(\frac{3x^{2}z^{4}}{5}\right)\)
- step1: Remove the parentheses:
\(\frac{2x^{3}y^{\frac{1}{2}}}{3}\left(\frac{3x^{2}z^{4}}{5}\right)\)
- step2: Remove the parentheses:
\(\frac{2x^{3}y^{\frac{1}{2}}}{3}\times \frac{3x^{2}z^{4}}{5}\)
- step3: Reduce the fraction:
\(2x^{3}y^{\frac{1}{2}}\times \frac{x^{2}z^{4}}{5}\)
- step4: Multiply the terms:
\(\frac{2x^{3}y^{\frac{1}{2}}x^{2}z^{4}}{5}\)
- step5: Multiply the terms:
\(\frac{2x^{5}y^{\frac{1}{2}}z^{4}}{5}\)
- step6: Simplify:
\(\frac{2x^{5}\sqrt{y}\times z^{4}}{5}\)
Expand the expression \( (\frac{2 x^{4} y^{2}}{3})(\frac{3 x^{2}}{2}+x^{2}-\frac{x y}{3}-\frac{2 x}{5}+2 x+5 y+12) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(\frac{2x^{4}y^{2}}{3}\right)\left(\frac{3x^{2}}{2}+x^{2}-\frac{xy}{3}-\frac{2x}{5}+2x+5y+12\right)\)
- step1: Remove the parentheses:
\(\frac{2x^{4}y^{2}}{3}\left(\frac{3x^{2}}{2}+x^{2}-\frac{xy}{3}-\frac{2x}{5}+2x+5y+12\right)\)
- step2: Calculate:
\(\frac{2x^{4}y^{2}}{3}\times \frac{75x^{2}-10xy+48x+150y+360}{30}\)
- step3: Reduce the fraction:
\(\frac{x^{4}y^{2}}{3}\times \frac{75x^{2}-10xy+48x+150y+360}{15}\)
- step4: Multiply the terms:
\(\frac{x^{4}y^{2}\left(75x^{2}-10xy+48x+150y+360\right)}{3\times 15}\)
- step5: Multiply the terms:
\(\frac{x^{4}y^{2}\left(75x^{2}-10xy+48x+150y+360\right)}{45}\)
- step6: Multiply the terms:
\(\frac{75x^{6}y^{2}-10x^{5}y^{3}+48x^{5}y^{2}+150x^{4}y^{3}+360x^{4}y^{2}}{45}\)
Aquí están las soluciones a las multiplicaciones algebraicas solicitadas:
1. **Multiplicación de \( (2 x)(7 x+4) \)**:
\[
(2 x)(7 x + 4) = 14x^{2} + 8x
\]
2. **Multiplicación de \( (5 x^{3} y^{3})(x^{2}-3 x y+y) \)**:
\[
(5 x^{3} y^{3})(x^{2} - 3 x y + y) = 5x^{5}y^{3} - 15x^{4}y^{4} + 5y^{4}x^{3}
\]
3. **Multiplicación de \( (6 x^{5} y^{6} z')(3 x^{2} y' z') \)**:
\[
(6 x^{5} y^{6} z')(3 x^{2} y' z') = 18x^{7}y^{6}
\]
4. **Multiplicación de \( \left(\frac{2 x^{4} y^{2}}{3}\right)\left(\frac{3 x^{2}}{2}+x^{2}-\frac{x y}{3}-\frac{2 x}{5}+2 x+5 y+12\right) \)**:
\[
\left(\frac{2 x^{4} y^{2}}{3}\right)\left(\frac{3 x^{2}}{2}+x^{2}-\frac{x y}{3}-\frac{2 x}{5}+2 x+5 y+12\right) = \frac{75x^{6}y^{2}-10x^{5}y^{3}+48x^{5}y^{2}+150x^{4}y^{3}+360x^{4}y^{2}}{45}
\]
5. **Multiplicación de \( \left(\frac{2 x^{3} y^{1 / 2}}{3}\right)\left(\frac{3 x^{2} z^{4}}{5}\right) \)**:
\[
\left(\frac{2 x^{3} y^{1 / 2}}{3}\right)\left(\frac{3 x^{2} z^{4}}{5}\right) = \frac{2x^{5}\sqrt{y}\times z^{4}}{5}
\]
6. **Multiplicación de \( (x-3)(x^{2}+3 x+9) \)**:
\[
(x-3)(x^{2}+3 x+9) = x^{3} - 27
\]
Si necesitas más ayuda o aclaraciones sobre algún paso, no dudes en preguntar.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución