Pregunta
upstudy study bank question image url

EXERCISE 16 Use prime factorisation to determine the HCF of the following numbers; (1) 8 and 16 (2) 9 and 27 (3) 18 and \( _{42} \) (4) 54 and 98 (5) 90 and 75 (7) 84 and 126 (8) 300 and 250 \( (10)^{*} 2250,7560 \) and 10500

Ask by Marshall Deleon. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the HCFs for each pair: 1. **8 and 16:** 8 2. **9 and 27:** 9 3. **18 and 42:** 6 4. **54 and 98:** 2 5. **90 and 75:** 15 7. **84 and 126:** 42 8. **300 and 250:** 50 10. **2250, 7560, and 10500:** 30

Solución

Certainly! Let's determine the Highest Common Factor (HCF) of each pair of numbers using **prime factorization**. The HCF is the largest number that divides each of the numbers without leaving a remainder. --- ### **(1) HCF of 8 and 16** - **Prime Factorization:** - \(8 = 2^3\) - \(16 = 2^4\) - **HCF Calculation:** - **Common Prime Factor:** 2 - **Lowest Power:** \(2^3\) - **HCF:** \(2^3 = 8\) --- ### **(2) HCF of 9 and 27** - **Prime Factorization:** - \(9 = 3^2\) - \(27 = 3^3\) - **HCF Calculation:** - **Common Prime Factor:** 3 - **Lowest Power:** \(3^2\) - **HCF:** \(3^2 = 9\) --- ### **(3) HCF of 18 and 42** *(Assuming the second number is 42 based on the notation)* - **Prime Factorization:** - \(18 = 2 \times 3^2\) - \(42 = 2 \times 3 \times 7\) - **HCF Calculation:** - **Common Prime Factors:** 2 and 3 - **Lowest Powers:** \(2^1\) and \(3^1\) - **HCF:** \(2 \times 3 = 6\) --- ### **(4) HCF of 54 and 98** - **Prime Factorization:** - \(54 = 2 \times 3^3\) - \(98 = 2 \times 7^2\) - **HCF Calculation:** - **Common Prime Factor:** 2 - **Lowest Power:** \(2^1\) - **HCF:** \(2\) --- ### **(5) HCF of 90 and 75** - **Prime Factorization:** - \(90 = 2 \times 3^2 \times 5\) - \(75 = 3 \times 5^2\) - **HCF Calculation:** - **Common Prime Factors:** 3 and 5 - **Lowest Powers:** \(3^1\) and \(5^1\) - **HCF:** \(3 \times 5 = 15\) --- ### **(7) HCF of 84 and 126** - **Prime Factorization:** - \(84 = 2^2 \times 3 \times 7\) - \(126 = 2 \times 3^2 \times 7\) - **HCF Calculation:** - **Common Prime Factors:** 2, 3, and 7 - **Lowest Powers:** \(2^1\), \(3^1\), and \(7^1\) - **HCF:** \(2 \times 3 \times 7 = 42\) --- ### **(8) HCF of 300 and 250** - **Prime Factorization:** - \(300 = 2^2 \times 3 \times 5^2\) - \(250 = 2 \times 5^3\) - **HCF Calculation:** - **Common Prime Factors:** 2 and 5 - **Lowest Powers:** \(2^1\) and \(5^2\) - **HCF:** \(2 \times 5^2 = 2 \times 25 = 50\) --- ### **(10) HCF of 2250, 7560, and 10500** - **Prime Factorization:** - \(2250 = 2 \times 3^2 \times 5^3\) - \(7560 = 2^3 \times 3^3 \times 5 \times 7\) - \(10500 = 2^2 \times 3 \times 5^3 \times 7\) - **HCF Calculation:** - **Common Prime Factors:** 2, 3, and 5 - **Lowest Powers:** - For 2: \(2^1\) (from 2250) - For 3: \(3^1\) (from 10500) - For 5: \(5^1\) (from 7560) - **HCF:** \(2^1 \times 3^1 \times 5^1 = 2 \times 3 \times 5 = 30\) --- ### **Summary of HCFs:** 1. **8 and 16:** **8** 2. **9 and 27:** **9** 3. **18 and 42:** **6** 4. **54 and 98:** **2** 5. **90 and 75:** **15** 7. **84 and 126:** **42** 8. **300 and 250:** **50** 10. **2250, 7560, and 10500:** **30** --- Feel free to reach out if you have any more questions or need further clarifications!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the highest common factor (HCF) using prime factorization, you start by breaking down each number into its prime factors. For example, let’s take the numbers 8 and 16: - 8 can be expressed as \( 2 \times 2 \times 2 = 2^3 \). - 16 can be expressed as \( 2 \times 2 \times 2 \times 2 = 2^4 \). The common prime factor here is \( 2 \), and the lowest power is \( 2^3 \), so the HCF of 8 and 16 is **8**! Now for 9 and 27: - 9 can be broken down to \( 3 \times 3 = 3^2 \). - 27 is \( 3 \times 3 \times 3 = 3^3 \). The common prime factor here is \( 3 \), and the lowest power is \( 3^2 \), giving an HCF of **9**. Repeating this process for the remaining pairs: (3) 18: \( 2 \times 3^2 \) and 42: \( 2 \times 3 \times 7 \) → HCF is **6**. (4) 54: \( 2 \times 3^3 \) and 98: \( 2 \times 7^2 \) → HCF is **2**. (5) 90: \( 2 \times 3^2 \times 5 \) and 75: \( 3 \times 5^2 \) → HCF is **15**. (7) 84: \( 2^2 \times 3 \times 7 \) and 126: \( 2 \times 3^2 \times 7 \) → HCF is **42**. (8) 300: \( 2^2 \times 3 \times 5^2 \) and 250: \( 2 \times 5^3 \) → HCF is **50**. (10) For 2250: \( 2 \times 3^2 \times 5^2 \times 5^2 \), 7560: \( 2^4 \times 3^3 \times 5 \times 7 \), and 10500: \( 2^2 \times 3 \times 5^2 \times 7 \) → HCF is **450**. So, remember to break down to those primes, and you’ll find those common factors happily!

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad