Pregunta
upstudy study bank question image url

- Solve the quadratic equation using the squa \[ 9=(x+8)^{2} \]

Ask by May Ortiz. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions to the equation \( 9 = (x + 8)^2 \) are \( x = -5 \) and \( x = -11 \).

Solución

To solve the quadratic equation using the method of taking square roots, follow these steps: \[ 9 = (x + 8)^2 \] 1. **Take the square root of both sides:** \[ \sqrt{9} = \sqrt{(x + 8)^2} \] 2. **Simplify the square roots:** \[ \pm 3 = x + 8 \] The "\(\pm\)" symbol indicates that there are two possible solutions: one where the square root is positive and one where it is negative. 3. **Solve for \( x \) in both cases:** - **Case 1:** Positive square root \[ 3 = x + 8 \] Subtract 8 from both sides: \[ x = 3 - 8 \\ x = -5 \] - **Case 2:** Negative square root \[ -3 = x + 8 \] Subtract 8 from both sides: \[ x = -3 - 8 \\ x = -11 \] 4. **Conclusion:** The quadratic equation \( 9 = (x + 8)^2 \) has two solutions: \[ x = -5 \quad \text{and} \quad x = -11 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the equation \( 9 = (x+8)^2 \), start by taking the square root of both sides. This gives you \( \pm 3 = x + 8 \). You’ll then separate the two cases: For the positive case: \( x + 8 = 3 \) leading to \( x = -5 \). For the negative case: \( x + 8 = -3 \) leading to \( x = -11 \). Thus, the two solutions are \( x = -5 \) and \( x = -11 \). Now, let's wrap our heads around this! Quadratic equations like this one pop up everywhere from physics to engineering, as they model things like projectile motion. Understanding the square root step helps when you’re in real-life situations needing quick calculations—like figuring out the max height of a thrown ball or the cost to build a fence around a garden! When solving quadratics, one common mistake is forgetting to consider the plus and minus from taking the square root. Always remember those two scenarios! Also, double-check your work by plugging your solutions back into the original equation to ensure both satisfy it. It's like a mini celebration whenever your numbers click back together!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad