A particle's velocity function is given by \( v(t) = 3t^{2} - 4t + 2 \). Find the position function if the initial position at time t=0 is 5.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the position function from the velocity function \( v(t) = 3t^{2} - 4t + 2 \), we need to integrate the velocity function with respect to time. The integration of \( v(t) \) will give us the position function \( s(t) \): \[ s(t) = \int (3t^{2} - 4t + 2) dt = t^{3} - 2t^{2} + 2t + C \] where \( C \) is the constant of integration. Given that the initial position at time \( t=0 \) is 5, we can determine \( C \): \[ s(0) = 0^{3} - 2 \cdot 0^{2} + 2 \cdot 0 + C = 5 \implies C = 5 \] Thus, the position function is: \[ s(t) = t^{3} - 2t^{2} + 2t + 5 \]