Pregunta
upstudy study bank question image url

n list tion 19 stion 20 Solve the equation. Then determine whether the equation is equation \[ \frac{3 x}{x-5}=\frac{15}{x-5}+4 \] What is the solution? Select the correct choice below and, if ne

Ask by Huang Kelley. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There is no solution to the equation.

Solución

To solve the equation: \[ \frac{3x}{x - 5} = \frac{15}{x - 5} + 4 \] **Step 1: Identify Restrictions** First, note that the denominator \( x - 5 \) cannot be zero. Therefore, \( x \neq 5 \). **Step 2: Eliminate the Denominator** Multiply both sides of the equation by \( x - 5 \) to eliminate the denominator: \[ 3x = 15 + 4(x - 5) \] **Step 3: Simplify the Equation** Expand and simplify the right side: \[ 3x = 15 + 4x - 20 \] \[ 3x = 4x - 5 \] **Step 4: Solve for \( x \)** Subtract \( 4x \) from both sides: \[ 3x - 4x = -5 \] \[ - x = -5 \] Multiply both sides by \( -1 \): \[ x = 5 \] **Step 5: Verify the Solution** Recall that \( x = 5 \) is not allowed because it makes the denominator zero. Therefore, \( x = 5 \) is **not** a valid solution. **Conclusion** The equation simplifies to \( x = 5 \), which is not within the domain of the original equation. Therefore, **there is no solution** to the equation. **Answer:** There is no solution to the equation.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the equation \[ \frac{3x}{x-5} = \frac{15}{x-5} + 4 \] first, eliminate the fractions by multiplying both sides by \(x - 5\) (assuming \(x \neq 5\)). This gives: \[ 3x = 15 + 4(x - 5). \] Now, simplify the right side: \[ 3x = 15 + 4x - 20. \] Combining like terms, we have: \[ 3x = 4x - 5. \] Next, isolate \(x\): \[ 3x - 4x = -5 \implies -x = -5 \implies x = 5. \] However, since \(x - 5\) would be zero when \(x = 5\), this value is not valid in the context of the original equation. Therefore, there is no solution to the equation. Now, let's wrap this up with some intriguing insights! When presented with a similar equation, always be wary of values that can cause divisions by zero, as it would render your solution invalid. It’s like trying to walk on water—might look appealing, but you’ll probably end up in over your head! For further exploration of rational equations, check out algebraic texts or online platforms like Khan Academy. They offer a trove of examples and exercises that can sharpen your skills and keep algebra engaging and fun!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad