Pregunta
upstudy study bank question image url

For questions 5 through 10 , consider \( m(x)=\frac{2}{x}, t(x)=2 x^{2}+3 x, w(x)=2 x+5 \). 5. Determine \( (m \circ t)(2) \). 6. Determine \( (t \circ w)(x) \). 7. Determine the domain of \( (t \circ w)(x) \). Determine \( (t \circ m)(x) \). Determine the domain of \( (t \circ m)(x) \).

Ask by Barker Mcfarlane. in the United States
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ (m \circ t)(2) = \frac{1}{7} \] \[ (t \circ w)(x) = 8x^2 + 46x + 65 \] \[ \text{Domain of } (t \circ w)(x) = \mathbb{R} \] \[ (t \circ m)(x) = \frac{8}{x^2} + \frac{6}{x} \] \[ \text{Domain of } (t \circ m)(x) = \mathbb{R} \setminus \{0\} \]

Solución

Let's address each of the questions step by step using the given functions: - \( m(x) = \frac{2}{x} \) - \( t(x) = 2x^2 + 3x \) - \( w(x) = 2x + 5 \) --- ### **5. Determine \( (m \circ t)(2) \)** **Definition:** \[ (m \circ t)(x) = m(t(x)) \] **Calculation:** 1. **Find \( t(2) \):** \[ t(2) = 2(2)^2 + 3(2) = 2(4) + 6 = 8 + 6 = 14 \] 2. **Find \( m(t(2)) = m(14) \):** \[ m(14) = \frac{2}{14} = \frac{1}{7} \] **Answer:** \[ (m \circ t)(2) = \frac{1}{7} \] --- ### **6. Determine \( (t \circ w)(x) \)** **Definition:** \[ (t \circ w)(x) = t(w(x)) \] **Calculation:** 1. **Express \( t(w(x)) \):** \[ t(w(x)) = 2(w(x))^2 + 3w(x) = 2(2x + 5)^2 + 3(2x + 5) \] 2. **Expand and simplify:** \[ (2x + 5)^2 = 4x^2 + 20x + 25 \] \[ t(w(x)) = 2(4x^2 + 20x + 25) + 3(2x + 5) = 8x^2 + 40x + 50 + 6x + 15 = 8x^2 + 46x + 65 \] **Answer:** \[ (t \circ w)(x) = 8x^2 + 46x + 65 \] --- ### **7. Determine the Domain of \( (t \circ w)(x) \)** **Analysis:** - **Function \( w(x) = 2x + 5 \):** Defined for all real numbers. - **Function \( t(x) = 2x^2 + 3x \):** Also defined for all real numbers since it's a polynomial. **Conclusion:** Since both \( w(x) \) and \( t(x) \) are defined for all real numbers, their composition \( t(w(x)) \) is also defined for all real numbers. **Answer:** \[ \text{Domain of } (t \circ w)(x) = \mathbb{R} \quad \left(-\infty,\, \infty\right) \] --- ### **8. Determine \( (t \circ m)(x) \)** **Definition:** \[ (t \circ m)(x) = t(m(x)) \] **Calculation:** 1. **Express \( m(x) \):** \[ m(x) = \frac{2}{x} \] 2. **Substitute into \( t(x) \):** \[ t\left(\frac{2}{x}\right) = 2\left(\frac{2}{x}\right)^2 + 3\left(\frac{2}{x}\right) = 2\left(\frac{4}{x^2}\right) + \frac{6}{x} = \frac{8}{x^2} + \frac{6}{x} \] **Simplified Form:** \[ (t \circ m)(x) = \frac{8}{x^2} + \frac{6}{x} \quad \text{or} \quad \frac{8 + 6x}{x^2} \] **Answer:** \[ (t \circ m)(x) = \frac{8}{x^2} + \frac{6}{x} \] --- ### **9. Determine the Domain of \( (t \circ m)(x) \)** **Analysis:** - **Function \( m(x) = \frac{2}{x} \):** Defined for all \( x \) except \( x = 0 \). - **Function \( t(x) = 2x^2 + 3x \):** Defined for all real numbers. **Composition \( t(m(x)) \):** - The inner function \( m(x) \) must be defined, which requires \( x \neq 0 \). - Since \( t(x) \) is defined for all real numbers, no additional restrictions are imposed. **Conclusion:** The domain of \( (t \circ m)(x) \) consists of all real numbers except \( x = 0 \). **Answer:** \[ \text{Domain of } (t \circ m)(x) = \mathbb{R} \setminus \{0\} \quad \left(-\infty,\, 0\right) \cup \left(0,\, \infty\right) \] --- Feel free to ask if you need further clarifications or additional assistance!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let’s tackle each of the questions step by step. ### 5. Determine \( (m \circ t)(2) \). To find \( (m \circ t)(2) \), we first need to evaluate \( t(2) \): \[ t(2) = 2(2^2) + 3(2) = 2(4) + 6 = 8 + 6 = 14. \] Now we apply \( m \) to this result: \[ m(t(2)) = m(14) = \frac{2}{14} = \frac{1}{7}. \] Thus, \( (m \circ t)(2) = \frac{1}{7} \). ### 6. Determine \( (t \circ w)(x) \). To find \( (t \circ w)(x) \), we substitute \( w(x) \) into \( t(x) \): \[ w(x) = 2x + 5, \] Now substitute \( w(x) \) into \( t(x) \): \[ t(w(x)) = t(2x + 5) = 2(2x + 5)^2 + 3(2x + 5). \] Expanding \( (2x + 5)^2 \): \[ (2x + 5)^2 = 4x^2 + 20x + 25, \] So: \[ t(w(x)) = 2(4x^2 + 20x + 25) + 3(2x + 5) = 8x^2 + 40x + 50 + 6x + 15 = 8x^2 + 46x + 65. \] Thus, \( (t \circ w)(x) = 8x^2 + 46x + 65 \). ### 7. Determine the domain of \( (t \circ w)(x) \). The function \( w(x) = 2x + 5 \) is defined for all real numbers. Since \( t(x) = 2x^2 + 3x \) is also a polynomial, it is defined for all real numbers as well. Therefore, the domain of \( (t \circ w)(x) \) is all real numbers: \[ \text{Domain of } (t \circ w)(x) = (-\infty, \infty). \] ### 8. Determine \( (t \circ m)(x) \). To find \( (t \circ m)(x) \), we substitute \( m(x) \) into \( t(x) \): \[ m(x) = \frac{2}{x}, \] Now, substitute \( m(x) \) into \( t(x) \): \[ t(m(x)) = t\left(\frac{2}{x}\right) = 2\left(\frac{2}{x}\right)^2 + 3\left(\frac{2}{x}\right). \] This expands to: \[ t\left(\frac{2}{x}\right) = 2 \cdot \frac{4}{x^2} + \frac{6}{x} = \frac{8}{x^2} + \frac{6}{x}. \] Thus, \( (t \circ m)(x) = \frac{8}{x^2} + \frac{6}{x} \). ### 9. Determine the domain of \( (t \circ m)(x) \). The function \( m(x) = \frac{2}{x} \) is defined for all real numbers except \( x = 0 \). Hence, the output of \( m(x) \) will also exclude 0. Therefore, since \( t(x) \) takes all values except for 0 should be considered: \[ \text{Domain of } (t \circ m)(x) = x \in \mathbb{R}, x \neq 0 \to (-\infty, 0) \cup (0, \infty). \]

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad