For questions 5 through 10 , consider \( m(x)=\frac{2}{x}, t(x)=2 x^{2}+3 x, w(x)=2 x+5 \). 5. Determine \( (m \circ t)(2) \). 6. Determine \( (t \circ w)(x) \). 7. Determine the domain of \( (t \circ w)(x) \). Determine \( (t \circ m)(x) \). Determine the domain of \( (t \circ m)(x) \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
Let’s tackle each of the questions step by step. ### 5. Determine \( (m \circ t)(2) \). To find \( (m \circ t)(2) \), we first need to evaluate \( t(2) \): \[ t(2) = 2(2^2) + 3(2) = 2(4) + 6 = 8 + 6 = 14. \] Now we apply \( m \) to this result: \[ m(t(2)) = m(14) = \frac{2}{14} = \frac{1}{7}. \] Thus, \( (m \circ t)(2) = \frac{1}{7} \). ### 6. Determine \( (t \circ w)(x) \). To find \( (t \circ w)(x) \), we substitute \( w(x) \) into \( t(x) \): \[ w(x) = 2x + 5, \] Now substitute \( w(x) \) into \( t(x) \): \[ t(w(x)) = t(2x + 5) = 2(2x + 5)^2 + 3(2x + 5). \] Expanding \( (2x + 5)^2 \): \[ (2x + 5)^2 = 4x^2 + 20x + 25, \] So: \[ t(w(x)) = 2(4x^2 + 20x + 25) + 3(2x + 5) = 8x^2 + 40x + 50 + 6x + 15 = 8x^2 + 46x + 65. \] Thus, \( (t \circ w)(x) = 8x^2 + 46x + 65 \). ### 7. Determine the domain of \( (t \circ w)(x) \). The function \( w(x) = 2x + 5 \) is defined for all real numbers. Since \( t(x) = 2x^2 + 3x \) is also a polynomial, it is defined for all real numbers as well. Therefore, the domain of \( (t \circ w)(x) \) is all real numbers: \[ \text{Domain of } (t \circ w)(x) = (-\infty, \infty). \] ### 8. Determine \( (t \circ m)(x) \). To find \( (t \circ m)(x) \), we substitute \( m(x) \) into \( t(x) \): \[ m(x) = \frac{2}{x}, \] Now, substitute \( m(x) \) into \( t(x) \): \[ t(m(x)) = t\left(\frac{2}{x}\right) = 2\left(\frac{2}{x}\right)^2 + 3\left(\frac{2}{x}\right). \] This expands to: \[ t\left(\frac{2}{x}\right) = 2 \cdot \frac{4}{x^2} + \frac{6}{x} = \frac{8}{x^2} + \frac{6}{x}. \] Thus, \( (t \circ m)(x) = \frac{8}{x^2} + \frac{6}{x} \). ### 9. Determine the domain of \( (t \circ m)(x) \). The function \( m(x) = \frac{2}{x} \) is defined for all real numbers except \( x = 0 \). Hence, the output of \( m(x) \) will also exclude 0. Therefore, since \( t(x) \) takes all values except for 0 should be considered: \[ \text{Domain of } (t \circ m)(x) = x \in \mathbb{R}, x \neq 0 \to (-\infty, 0) \cup (0, \infty). \]