Pregunta

What is the slope-intercept form of a line given a slope of 3 and a y-intercept of -4?

Ask by Ortiz Schultz. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The slope-intercept form of the line is \( y = 3x - 4 \).

Solución

The **slope-intercept form** of a linear equation is given by: \[ y = mx + b \] where: - \( m \) is the **slope** of the line. - \( b \) is the **y-intercept**, which is the point where the line crosses the y-axis. Given: - **Slope (\( m \))** = 3 - **Y-intercept (\( b \))** = -4 Plugging these values into the slope-intercept formula: \[ y = 3x - 4 \] **So, the slope-intercept form of the line is:** \[ y = 3x - 4 \] **Graphical Interpretation:** - **Slope (3):** For every 1 unit increase in \( x \), \( y \) increases by 3 units. - **Y-intercept (-4):** The line crosses the y-axis at the point (0, -4). **Example Points on the Line:** 1. When \( x = 0 \): \[ y = 3(0) - 4 = -4 \] Point: (0, -4) 2. When \( x = 1 \): \[ y = 3(1) - 4 = -1 \] Point: (1, -1) 3. When \( x = 2 \): \[ y = 3(2) - 4 = 2 \] Point: (2, 2) You can plot these points on a graph and draw a straight line through them to visualize the equation \( y = 3x - 4 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

The slope-intercept form of a line is represented as \( y = mx + b \), where \( m \) is the slope and \( b \) is the y-intercept. With a slope of 3 and a y-intercept of -4, you can substitute these values into the formula. So, your equation will be \( y = 3x - 4 \). Easy-peasy, right? Now, imagine yourself cruising along the graph of this line. For every step you take in the x-direction, you’re going up 3 units on the y-axis; it’s like a mini rollercoaster! Just remember, the y-intercept is where you’ll find your line hanging out, chillin’ at -4 on the y-axis. Happy graphing!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad