Factor out the greatest common factor \( -14 p^{3}+16 p^{2}+6 p \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To factor out the greatest common factor (GCF) of the expression \( -14p^{3} + 16p^{2} + 6p \), we first identify the GCF of the coefficients: The GCF of -14, 16, and 6 is 2. Next, we also have the variable \( p \) present in all the terms, specifically \( p^{1} \) since the lowest power is \( p \). Thus, the GCF of the entire expression is \( 2p \). We can factor this out: \[ -14p^{3} + 16p^{2} + 6p = 2p(-7p^{2} + 8p + 3). \] Now, we can further investigate if \( -7p^{2} + 8p + 3 \) can be factored, but the important part here is the initial factoring step!