Pregunta
upstudy study bank question image url

With the current housing market situation in the United States, it is estimated that the number of houses built, \( H(t) \) (in millions) over the next 5 years, is related to the mortgage rate, \( r(t) \) (percent per year), and can be modeled by the equation: \[ 7 H(t)^{2}+r(t)=15 \] Find the rate of change of the number of houses being built with respect to time when the mortgage rate is \( 3 \% \) per year and is increasing at \( 0.1 \% \) per year. (Round your answer to the nearest whole number.) The number of houses built is?

Ask by Savage Bob. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The number of houses being built is decreasing by about 5,460 houses per year.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

The Deep Dive

To solve for the number of houses being built, \( H(t) \), when the mortgage rate \( r(t) \) is \( 3\% \) (i.e., \( r(t) = 3 \)), we start with the given equation: \[ 7 H(t)^{2} + r(t) = 15 \] Substituting \( r(t) = 3 \% \): \[ 7 H(t)^{2} + 3 = 15 \] Now, simplify this equation: \[ 7 H(t)^{2} = 15 - 3 \] \[ 7 H(t)^{2} = 12 \] \[ H(t)^{2} = \frac{12}{7} \] \[ H(t) = \sqrt{\frac{12}{7}} \] \[ H(t) \approx \sqrt{1.7143} \approx 1.309 \text{ million} \] Next, we find \( \frac{dH}{dt} \) when \( r(t) = 3\% \) and is increasing at \( 0.1\% \) per year, so \( \frac{dr}{dt} = 0.1 \). We take the derivative of both sides of the original equation with respect to time \( t \): \[ \frac{d}{dt}(7 H(t)^{2}) + \frac{dr}{dt} = 0 \] Using the chain rule on the first term: \[ 7 \cdot 2H(t) \frac{dH}{dt} + \frac{dr}{dt} = 0 \] Substituting \( H(t) \) and \( \frac{dr}{dt} \): \[ 14 H(t) \frac{dH}{dt} + 0.1 = 0 \] Solving for \( \frac{dH}{dt} \): \[ 14 (1.309) \frac{dH}{dt} + 0.1 = 0 \] \[ 14(1.309) \frac{dH}{dt} = -0.1 \] \[ \frac{dH}{dt} = \frac{-0.1}{14(1.309)} \approx \frac{-0.1}{18.326} \approx -0.00546 \text{ million/year} \] Now, rounding to the nearest whole number, the rate of change of the number of houses being built is approximately: \[ H(t) \approx 1 \text{ million houses built (rounded)} \] So, when rounding to the nearest whole number, the number of houses built is approximately \( 1 \) million.

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad