Solve the following a) \( 4 \cdot 3^{x}+3^{x}=15 \) b) \( 2^{x+1}+2^{x-1}=5 \) c) \( 3\left(3^{x+2}+3^{x-1}\right)=84 \) d) \( 4^{x}+4 \cdot 2^{x}-5=0 \) e) \( 6.10^{x}+10^{x+2}-106=0 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve each equation, let's break it down step-by-step for clarity! **a)** \( 4 \cdot 3^{x} + 3^{x} = 15 \) Combine like terms: \[ 5 \cdot 3^{x} = 15 \] Divide both sides by 5: \[ 3^{x} = 3 \] Taking the logarithm (or recognizing the base), we have: \[ x = 1 \] --- **b)** \( 2^{x+1} + 2^{x-1} = 5 \) Rewrite the terms: \[ 2 \cdot 2^{x} + \frac{1}{2} \cdot 2^{x} = 5 \] Combine: \[ \frac{5}{2} \cdot 2^{x} = 5 \] Multiplying both sides by 2: \[ 5 \cdot 2^{x} = 10 \] Divide by 5: \[ 2^{x} = 2 \] Thus, \( x = 1 \). --- **c)** \( 3(3^{x+2} + 3^{x-1}) = 84 \) First, divide by 3: \[ 3^{x+2} + 3^{x-1} = 28 \] Express \( 3^{x+2} \) and \( 3^{x-1} \) in terms of \( 3^{x} \): \[ 9 \cdot 3^{x} + \frac{1}{3} \cdot 3^{x} = 28 \] Combining gives: \[ (9 + \frac{1}{3}) \cdot 3^{x} = 28 \] Convert: \[ \frac{28 \cdot 3}{28} = \frac{28 \cdot 10}{3} \] So: \[ 3^{x} = \frac{84}{28} = 3 \] Thus, \( x = 1 \). --- **d)** \( 4^{x} + 4 \cdot 2^{x} - 5 = 0 \) Rewrite \( 4^{x} \) as \( (2^{2})^{x} = 2^{2x} \): \[ 2^{2x} + 4 \cdot 2^{x} - 5 = 0 \] Let \( y = 2^{x} \): \[ y^2 + 4y - 5 = 0 \] Factoring: \[ (y - 1)(y + 5) = 0 \] So, \( y = 1 \) (negative not valid): \[ 2^{x} = 1 \Rightarrow x = 0. \] --- **e)** \( 6 \cdot 10^{x} + 10^{x+2} - 106 = 0 \) Rewrite \( 10^{x+2} \) as \( 100 \cdot 10^{x} \): \[ 6 \cdot 10^{x} + 100 \cdot 10^{x} - 106 = 0 \] Combine: \[ 106 \cdot 10^{x} - 106 = 0 \] Factoring gives: \[ 10^{x} = 1 \Rightarrow x = 0. \] So the solutions for each are: - a) \( x = 1 \) - b) \( x = 1 \) - c) \( x = 1 \) - d) \( x = 0 \) - e) \( x = 0 \)