Pregunta
upstudy study bank question image url

Solve the following a) \( 4 \cdot 3^{x}+3^{x}=15 \) b) \( 2^{x+1}+2^{x-1}=5 \) c) \( 3\left(3^{x+2}+3^{x-1}\right)=84 \) d) \( 4^{x}+4 \cdot 2^{x}-5=0 \) e) \( 6.10^{x}+10^{x+2}-106=0 \)

Ask by Alexander Kelley. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Solutions:** - **a)** \( x = 1 \) - **b)** \( x = 1 \) - **c)** \( x = 1 \) - **d)** \( x = 0 \) - **e)** \( x = 0 \)

Solución

Let's solve each equation step by step. --- ### **a) \( 4 \cdot 3^{x} + 3^{x} = 15 \)** **Solution:** 1. Combine like terms: \[ 4 \cdot 3^{x} + 3^{x} = 5 \cdot 3^{x} \] 2. Set the equation equal to 15: \[ 5 \cdot 3^{x} = 15 \] 3. Divide both sides by 5: \[ 3^{x} = 3 \] 4. Solve for \( x \): \[ x = 1 \] **Answer:** \( x = 1 \) --- ### **b) \( 2^{x+1} + 2^{x-1} = 5 \)** **Solution:** 1. Rewrite the exponents: \[ 2^{x+1} = 2 \cdot 2^{x} \quad \text{and} \quad 2^{x-1} = \frac{1}{2} \cdot 2^{x} \] 2. Substitute back into the equation: \[ 2 \cdot 2^{x} + \frac{1}{2} \cdot 2^{x} = 5 \] 3. Factor out \( 2^{x} \): \[ \left(2 + \frac{1}{2}\right) \cdot 2^{x} = 5 \quad \Rightarrow \quad \frac{5}{2} \cdot 2^{x} = 5 \] 4. Solve for \( 2^{x} \): \[ 2^{x} = 2 \] 5. Therefore: \[ x = 1 \] **Answer:** \( x = 1 \) --- ### **c) \( 3\left(3^{x+2} + 3^{x-1}\right) = 84 \)** **Solution:** 1. Divide both sides by 3: \[ 3^{x+2} + 3^{x-1} = 28 \] 2. Express in terms of \( 3^{x-1} \): \[ 3^{x+2} = 3^{x-1} \cdot 3^{3} = 27 \cdot 3^{x-1} \] \[ 27 \cdot 3^{x-1} + 3^{x-1} = 28 \] 3. Factor out \( 3^{x-1} \): \[ 28 \cdot 3^{x-1} = 28 \] 4. Divide by 28: \[ 3^{x-1} = 1 \quad \Rightarrow \quad x-1 = 0 \quad \Rightarrow \quad x = 1 \] **Answer:** \( x = 1 \) --- ### **d) \( 4^{x} + 4 \cdot 2^{x} - 5 = 0 \)** **Solution:** 1. Rewrite \( 4^{x} \) as \( (2^2)^x = 2^{2x} \). 2. Let \( y = 2^{x} \). Then \( 2^{2x} = y^2 \). 3. Substitute into the equation: \[ y^2 + 4y - 5 = 0 \] 4. Solve the quadratic equation: \[ y = \frac{-4 \pm \sqrt{16 + 20}}{2} = \frac{-4 \pm \sqrt{36}}{2} = \frac{-4 \pm 6}{2} \] \[ y = 1 \quad \text{or} \quad y = -5 \] 5. Since \( y = 2^{x} \) must be positive: \[ 2^{x} = 1 \quad \Rightarrow \quad x = 0 \] **Answer:** \( x = 0 \) --- ### **e) \( 6 \cdot 10^{x} + 10^{x+2} - 106 = 0 \)** **Solution:** 1. Rewrite \( 10^{x+2} \) as \( 10^2 \cdot 10^{x} = 100 \cdot 10^{x} \). 2. Substitute back into the equation: \[ 6 \cdot 10^{x} + 100 \cdot 10^{x} - 106 = 0 \] 3. Combine like terms: \[ 106 \cdot 10^{x} - 106 = 0 \] 4. Solve for \( 10^{x} \): \[ 106 \cdot 10^{x} = 106 \quad \Rightarrow \quad 10^{x} = 1 \] 5. Therefore: \[ x = 0 \] **Answer:** \( x = 0 \) --- ### **Summary of Solutions:** - **a)** \( x = 1 \) - **b)** \( x = 1 \) - **c)** \( x = 1 \) - **d)** \( x = 0 \) - **e)** \( x = 0 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve each equation, let's break it down step-by-step for clarity! **a)** \( 4 \cdot 3^{x} + 3^{x} = 15 \) Combine like terms: \[ 5 \cdot 3^{x} = 15 \] Divide both sides by 5: \[ 3^{x} = 3 \] Taking the logarithm (or recognizing the base), we have: \[ x = 1 \] --- **b)** \( 2^{x+1} + 2^{x-1} = 5 \) Rewrite the terms: \[ 2 \cdot 2^{x} + \frac{1}{2} \cdot 2^{x} = 5 \] Combine: \[ \frac{5}{2} \cdot 2^{x} = 5 \] Multiplying both sides by 2: \[ 5 \cdot 2^{x} = 10 \] Divide by 5: \[ 2^{x} = 2 \] Thus, \( x = 1 \). --- **c)** \( 3(3^{x+2} + 3^{x-1}) = 84 \) First, divide by 3: \[ 3^{x+2} + 3^{x-1} = 28 \] Express \( 3^{x+2} \) and \( 3^{x-1} \) in terms of \( 3^{x} \): \[ 9 \cdot 3^{x} + \frac{1}{3} \cdot 3^{x} = 28 \] Combining gives: \[ (9 + \frac{1}{3}) \cdot 3^{x} = 28 \] Convert: \[ \frac{28 \cdot 3}{28} = \frac{28 \cdot 10}{3} \] So: \[ 3^{x} = \frac{84}{28} = 3 \] Thus, \( x = 1 \). --- **d)** \( 4^{x} + 4 \cdot 2^{x} - 5 = 0 \) Rewrite \( 4^{x} \) as \( (2^{2})^{x} = 2^{2x} \): \[ 2^{2x} + 4 \cdot 2^{x} - 5 = 0 \] Let \( y = 2^{x} \): \[ y^2 + 4y - 5 = 0 \] Factoring: \[ (y - 1)(y + 5) = 0 \] So, \( y = 1 \) (negative not valid): \[ 2^{x} = 1 \Rightarrow x = 0. \] --- **e)** \( 6 \cdot 10^{x} + 10^{x+2} - 106 = 0 \) Rewrite \( 10^{x+2} \) as \( 100 \cdot 10^{x} \): \[ 6 \cdot 10^{x} + 100 \cdot 10^{x} - 106 = 0 \] Combine: \[ 106 \cdot 10^{x} - 106 = 0 \] Factoring gives: \[ 10^{x} = 1 \Rightarrow x = 0. \] So the solutions for each are: - a) \( x = 1 \) - b) \( x = 1 \) - c) \( x = 1 \) - d) \( x = 0 \) - e) \( x = 0 \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad