oftermine whether each equation represents an inverse proportion. It so, find the constant of proportionality. \( \frac{1}{20}=x=\frac{5}{y} \) \( y+\frac{1}{7} x=\frac{1}{2} \) \( 0,1 x=\frac{5}{y} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To determine if each equation represents an inverse proportion, we need to establish if it follows the form \(y = \frac{k}{x}\) where \(k\) is a constant. For the first equation, rearranging gives you: \[ y = \frac{5}{x} \] This indeed shows an inverse relationship where \(k = 5\). For the second equation: \[ y = \frac{1}{2} - \frac{1}{7}x \] This equation is not of the form \(y = \frac{k}{x}\), indicating that it is not an inverse proportion. Finally, for the third equation: \[ y = \frac{0.1x}{5} = \frac{0.1}{5/x} \] This simplifies an inverse relationship. Here, \(k = 0.1\). In summary, the first and third equations represent inverse proportions with constants of proportionality 5 and 0.1, respectively, while the second does not.