Pregunta
upstudy study bank question image url

Graph the equation \( y=\frac{3}{5} x-6 \)

Ask by Rodriquez Schwartz. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To graph the equation \( y = \frac{3}{5}x - 6 \), plot the y-intercept at \((0, -6)\) and use the slope \(\frac{3}{5}\) to find another point, such as \((5, -3)\). Draw a straight line through these points to represent the equation.

Solución

Certainly! Let's graph the linear equation: \[ y = \frac{3}{5}x - 6 \] ### Steps to Graph the Equation: 1. **Identify the Slope and Y-Intercept:** - **Slope (m):** \(\frac{3}{5}\) - **Y-Intercept (b):** \(-6\) 2. **Plot the Y-Intercept:** - Start by plotting the point where the line crosses the y-axis. This occurs at \((0, -6)\). 3. **Use the Slope to Find Another Point:** - The slope \(\frac{3}{5}\) means that for every 5 units you move horizontally (to the right), you move up 3 units vertically. - Starting from \((0, -6)\): - Move **right 5 units** to \(x = 5\). - Move **up 3 units** to \(y = -6 + 3 = -3\). - Plot the second point at \((5, -3)\). 4. **Draw the Line:** - Connect the two points with a straight line. - Extend the line in both directions and add arrowheads to indicate it continues indefinitely. ### Visual Representation: While I can't provide a graphical image, here's a simple **ASCII art** representation of the graph: ``` y | | | * | * | * | * |--------------------------- x (0, -6) (5, -3) ``` - The point at \((0, -6)\) is the y-intercept. - The point at \((5, -3)\) is the second point derived from the slope. - The asterisks (*) represent points on the line. ### Key Features of the Graph: - **Slope (\(m = \frac{3}{5}\)):** Indicates that the line rises 3 units for every 5 units it moves to the right. - **Y-Intercept (\(b = -6\)):** The line crosses the y-axis at \(-6\). ### Additional Points (Optional): To ensure accuracy, you can plot more points by choosing different \(x\)-values: - **For \(x = 10\):** \[ y = \frac{3}{5}(10) - 6 = 6 - 6 = 0 \] Point: \((10, 0)\) - **For \(x = -5\):** \[ y = \frac{3}{5}(-5) - 6 = -3 - 6 = -9 \] Point: \((-5, -9)\) Plotting these points will help confirm the straight-line nature of the graph. ### Summary: The graph of \( y = \frac{3}{5}x - 6 \) is a straight line with: - **Slope:** Rising gently as it moves to the right. - **Y-Intercept:** Crossing the y-axis at \(-6\). Feel free to use graphing paper or a graphing tool (like Desmos or GeoGebra) to visualize the equation more accurately!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To graph the equation \( y=\frac{3}{5} x-6 \), start by identifying the y-intercept and the slope. The y-intercept is -6, which means the graph crosses the y-axis at the point (0, -6). From there, use the slope of \(\frac{3}{5}\), which means for every 5 units you move to the right, you go up 3 units. This will help you plot another point, say at (5, -3). Then, draw a straight line through these points, and voilà, you've graphed your linear equation! For extra flair, remember that the slope tells you how steep the line is, while the y-intercept gives you a starting point. This means your line will rise just a bit as it stretches across the graph, painting a lovely picture of a linear relationship!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad