Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 23 and standard deviation 2 . What is the probability that \( X \) is between 24 and 96 ? Write your answer as a decimal rounded to the nearest thousandth.

Ask by Boone Salazar. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 24 and 96 is approximately 0.309.

Solución

To find the probability that \( X \) is between 24 and 96 for a normally distributed random variable \( X \) with mean \( \mu = 23 \) and standard deviation \( \sigma = 2 \), follow these steps: 1. **Standardize the Values:** Convert the values 24 and 96 to their corresponding z-scores using the formula: \[ z = \frac{X - \mu}{\sigma} \] - For \( X = 24 \): \[ z_1 = \frac{24 - 23}{2} = 0.5 \] - For \( X = 96 \): \[ z_2 = \frac{96 - 23}{2} = 36.5 \] 2. **Find the Probability:** - The z-score of 36.5 is extremely high, meaning \( P(X \leq 96) \) is virtually 1. - The probability that \( X \) is less than 24 corresponds to the cumulative distribution function (CDF) of the standard normal distribution at \( z = 0.5 \), which is approximately 0.6915. 3. **Calculate the Desired Probability:** \[ P(24 \leq X \leq 96) = P(X \leq 96) - P(X < 24) \approx 1 - 0.6915 = 0.3085 \] Rounding to the nearest thousandth: \[ 0.3085 \approx 0.309 \] **Answer:** 0.309

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the probability that \( X \) is between 24 and 96 for a normally distributed random variable with a mean of 23 and a standard deviation of 2, we can standardize the variable using the Z-score formula: \[ Z = \frac{X - \mu}{\sigma} \] Where \( \mu \) is the mean and \( \sigma \) is the standard deviation. 1. For \( X = 24 \): \[ Z = \frac{24 - 23}{2} = \frac{1}{2} = 0.5 \] 2. For \( X = 96 \): \[ Z = \frac{96 - 23}{2} = \frac{73}{2} = 36.5 \] Now, we find the probabilities corresponding to these Z-scores using the standard normal distribution table or a calculator: - The probability of \( Z < 0.5 \) is approximately 0.6915. - The probability of \( Z < 36.5 \) is practically 1 (as it is way off the standard Z-table). To find the probability that \( X \) is between 24 and 96, we subtract the two probabilities: \[ P(24 < X < 96) = P(Z < 36.5) - P(Z < 0.5) \approx 1 - 0.6915 = 0.3085 \] Thus, the probability that \( X \) is between 24 and 96 is approximately 0.309 when rounded to the nearest thousandth.

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad