Pregunta
upstudy study bank question image url

Graph the following function on the axes provided \[ f(x)=\left\{\begin{array}{lll}x-1 & \text { for } & 2 \leq x<6 \\ -3 & \text { for } & x=6 \\ -4 & \text { for } & x>6\end{array}\right. \]

Ask by Schwartz Ingram. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To graph the function \( f(x) \), plot a solid line from \( (2,1) \) to just below \( (6,5) \), a closed dot at \( (6,-3) \), and a horizontal line at \( y = -4 \) for \( x > 6 \).

Solución

Certainly! Let's graph the piecewise function: \[ f(x)=\left\{ \begin{array}{lll} x-1 & \text{for} & 2 \leq x < 6 \\ -3 & \text{for} & x = 6 \\ -4 & \text{for} & x > 6 \end{array} \right. \] ### Step-by-Step Graphing: 1. **Identify the Different Pieces of the Function:** - **Line Segment:** \( f(x) = x - 1 \) for \( 2 \leq x < 6 \) - **Point:** \( f(x) = -3 \) at \( x = 6 \) - **Horizontal Line:** \( f(x) = -4 \) for \( x > 6 \) 2. **Plot Each Piece Separately:** - **For \( 2 \leq x < 6 \), \( f(x) = x - 1 \):** - Calculate endpoints: - At \( x = 2 \): \( f(2) = 2 - 1 = 1 \) - As \( x \) approaches 6: \( f(6^-) = 6 - 1 = 5 \) - Plot a **solid line** from \( (2, 1) \) to just below \( (6, 5) \). Use an **open circle** at \( (6, 5) \) to indicate that \( x = 6 \) is not included in this interval. - **At \( x = 6 \), \( f(x) = -3 \):** - Plot a **solid dot** at \( (6, -3) \). - **For \( x > 6 \), \( f(x) = -4 \):** - Draw a **horizontal dashed line** starting just after \( x = 6 \) at \( y = -4 \). - Optionally, use an **open circle** at \( (6, -4) \) if you want to indicate that \( x = 6 \) is not included in this interval. 3. **Combine All Pieces:** Here's a conceptual representation of the graph: ``` y | 5 | o 4 |----------------- 3 | * 2 | 1 |● 0 |________________________ x 2 6 ``` - **●** at \( (2, 1) \): Start of the line segment. - **o** at \( (6, 5) \): Open circle where the line segment approaches but doesn't include \( x = 6 \). - **\*** at \( (6, -3) \): Solid dot representing \( f(6) = -3 \). - **\--** line extending to the right from \( x = 6 \) at \( y = -4 \): Represents \( f(x) = -4 \) for \( x > 6 \). ### Detailed Description: - **From \( x = 2 \) to \( x = 6 \):** - The function increases linearly with a slope of 1. - It starts at \( (2, 1) \) and approaches \( (6, 5) \) but does not include this point. - **At \( x = 6 \):** - There is a distinct value \( f(6) = -3 \), represented by a closed dot. - **For \( x > 6 \):** - The function is constant at \( y = -4 \). ### Summary: - **Line Segment:** Solid line from \( (2,1) \) to \( (6,5) \) (open at \( x = 6 \)). - **Point at \( x = 6 \):** Closed dot at \( (6,-3) \). - **Horizontal Line for \( x > 6 \):** Dashed or solid line at \( y = -4 \). If you have graphing software or graph paper, you can plot these points and lines accordingly to visualize the function.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To visualize the function \( f(x) \), you start by plotting the piecewise sections. For \( 2 \leq x < 6 \), the graph of \( f(x) = x - 1 \) is a straight line that starts at the point \( (2, 1) \) and ends just before \( (6, 5) \). At \( x = 6 \), the function value drops to \( -3 \), so you'll plot a closed dot at \( (6, -3) \). After \( x = 6 \), the function stays constant at \( -4 \), which means you will draw a horizontal line from \( x = 6 \) onward, but open at \( (6, -4) \). To summarize: - From \( x = 2 \) to just below \( 6 \): line from (2, 1) to (6, 5) - At \( x = 6 \): closed point at (6, -3) - For \( x > 6 \): horizontal line at \( y = -4 \) starting just at \( x = 6 \) with an open circle. This generates an interesting piecewise graph with a sharp drop at \( x = 6 \)!

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad