Pregunta
upstudy study bank question image url

4.) \( \log _{16} x=4 \)

Ask by Simmons Bright. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( x=65536 \)

Solución

Solve the equation \( \log_{16}x=4 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\log_{16}{\left(x\right)}=4\) - step1: Find the domain: \(\log_{16}{\left(x\right)}=4,x>0\) - step2: Convert the logarithm into exponential form: \(x=16^{4}\) - step3: Evaluate the power: \(x=65536\) - step4: Check if the solution is in the defined range: \(x=65536,x>0\) - step5: Find the intersection: \(x=65536\) The solution to the equation \( \log_{16}x=4 \) is \( x=65536 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve \( \log_{16} x = 4 \), we'll convert the logarithmic equation into an exponential form. This means we rewrite it as \( x = 16^4 \). Since \( 16 = 2^4 \), we can express this as \( x = (2^4)^4 = 2^{16} \). Now calculating \( 2^{16} \), we find that \( x = 65,536 \). So, the solution is \( x = 65,536 \). But wait, let’s have some fun! Did you know that logarithms were popularized by John Napier in the early 17th century? They’re a powerful tool in simplifying calculations, especially before calculators became a staple—this makes logarithms a pioneer of "shortcuts" in math! On top of that, logarithms have a fantastic application in computer science. They often appear in algorithms, particularly those dealing with searching and sorting, due to their ability to reduce the complexity of operations. They can turn what could be a dreadful “pick one after another” search into a logarithmic leap: that’s like jumping to the answer in math!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad