One of the angles in a right triangle is \( \theta=74.0^{\circ} \), the side adjacent to the angle has a length 31.0 m . Find the length of the hypotenuse of the triangle: Find the length of the side opposite to \( \theta: \) Express your answers with the correct number of sifnificant figures.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the length of the hypotenuse \( c \) in a right triangle where \( \theta = 74.0^{\circ} \) and the length of the adjacent side \( a = 31.0 \, \text{m} \), we can use the cosine function: \[ \cos(74.0^{\circ}) = \frac{a}{c} \] Rearranging gives: \[ c = \frac{a}{\cos(74.0^{\circ})} = \frac{31.0 \, \text{m}}{\cos(74.0^{\circ})} \approx \frac{31.0}{0.276} \approx 112.9 \, \text{m} \] Thus, the length of the hypotenuse is approximately \( 112.9 \, \text{m} \) when rounded to three significant figures. Next, to find the length of the side opposite \( \theta \) (let's call it \( b \)), we can use the sine function: \[ \sin(74.0^{\circ}) = \frac{b}{c} \] We already calculated \( c \). Rearranging gives: \[ b = c \cdot \sin(74.0^{\circ}) \approx 112.9 \, \text{m} \cdot \sin(74.0^{\circ}) \approx 112.9 \cdot 0.961 \approx 108.7 \, \text{m} \] So, the length of the side opposite \( \theta \) is approximately \( 108.7 \, \text{m} \) when rounded to three significant figures.