Pregunta
upstudy study bank question image url

In which case does the transformation of \( \triangle Q R S \) result in an image \( \triangle D E F \) where \( \angle Q \cong \angle D, \angle R \cong \angle E, \angle S \cong \angle F \), and \( \frac{Q R}{D E}=\frac{Q S}{D F}=\frac{R S}{E F} \) a translation of 6 units to the left and 8.5 units up followed by a reflection over the line \( y=2 x \) a reflection over the line \( y=-2 x \) followed by a translation of 6.5 units to the right and 3.5 units down a rotation of \( 45^{\circ} \) clockwise about vertex \( A \) followed by a dilation by a scale factor of 0.95 about the origin a dilation by a scale factor of 1 about the origin followed by a rotation of \( 45^{\circ} \) clockwise about vertex \( A \)

Ask by Wheeler Ford. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

A rotation of \(45^\circ\) clockwise about vertex \(A\) followed by a dilation by a scale factor of 0.95 about the origin

Solución

To determine which transformation results in the image \( \triangle DEF \) such that: - \( \angle Q \cong \angle D \) - \( \angle R \cong \angle E \) - \( \angle S \cong \angle F \) - \( \frac{QR}{DE} = \frac{QS}{DF} = \frac{RS}{EF} \) we need to identify a **similarity transformation**. Similarity transformations preserve the shape of the figure, meaning that all corresponding angles remain congruent and the sides are proportional by a consistent scale factor. Let's analyze each option: 1. **Translation followed by Reflection:** - **Transformation:** Translation (6 units left, 8.5 units up) followed by reflection over the line \( y = 2x \). - **Effect:** Both translation and reflection are **isometries** (distance and angle preserving transformations) with a scale factor of 1. - **Result:** The triangles remain congruent (\(\text{scale factor} = 1\)). 2. **Reflection followed by Translation:** - **Transformation:** Reflection over the line \( y = -2x \) followed by translation (6.5 units right, 3.5 units down). - **Effect:** Both reflection and translation are **isometries** with a scale factor of 1. - **Result:** The triangles remain congruent (\(\text{scale factor} = 1\)). 3. **Rotation followed by Dilation:** - **Transformation:** Rotation of \( 45^\circ \) clockwise about vertex \( A \) followed by dilation with a scale factor of 0.95 about the origin. - **Effect:** Rotation is an isometry, and dilation is a **similarity transformation** that changes the size by a scale factor of 0.95. - **Result:** The triangles are similar with corresponding sides in the ratio \( 0.95 \). 4. **Dilation followed by Rotation:** - **Transformation:** Dilation with a scale factor of 1 about the origin followed by rotation of \( 45^\circ \) clockwise about vertex \( A \). - **Effect:** Dilation with a scale factor of 1 is effectively an identity transformation (no change), and rotation is an isometry. - **Result:** The triangles remain congruent (\(\text{scale factor} = 1\)). **Conclusion:** Only option **3** introduces a change in scale factor while preserving the angle congruencies, making it the correct similarity transformation that satisfies the given conditions. **Answer:** A rotation of \( 45^{\circ} \) clockwise about vertex \( A \) followed by a dilation by a scale factor of 0.95 about the origin

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The transformation involves congruence of angles and proportionality of side lengths, which indicates that the transformation must maintain the shape of triangle \( QRS \) while possibly changing its size. The most suitable transformation here is the dilation followed by rotation since a dilation will preserve the angles and a rotation will reposition the triangle without altering the distance ratios between corresponding sides. For triangle transformations, maintaining the proportionality of sides while ensuring the angles remain unchanged is crucial in determining similarity. Therefore, transformations like dilations specifically keep the angles congruent while adjusting the overall size, making it perfect for this scenario when combined with a rotation.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad