Pregunta
Find the domain of the function. \( f(x)=4+\frac{1}{x^{5}} \) The domain is \( \square \). (Simplify your answer. Type your answer in interval notation.)
Ask by Chang Pearson. in the United States
Jan 22,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The domain of the function \( f(x) = 4 + \frac{1}{x^5} \) is all real numbers except \( x = 0 \), which is written in interval notation as \( (-\infty, 0) \cup (0, \infty) \).
Solución
To find the domain of the function \( f(x) = 4 + \frac{1}{x^5} \), we need to identify the values of \( x \) for which the function is defined.
1. The term \( \frac{1}{x^5} \) is undefined when the denominator is zero. Therefore, we need to find when \( x^5 = 0 \).
2. Solving \( x^5 = 0 \) gives us \( x = 0 \).
Since the function is undefined at \( x = 0 \), the domain of \( f(x) \) includes all real numbers except for \( x = 0 \).
In interval notation, the domain can be expressed as:
\[
(-\infty, 0) \cup (0, \infty)
\]
Thus, the domain of the function is \( \boxed{(-\infty, 0) \cup (0, \infty)} \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
The function \( f(x)=4+\frac{1}{x^{5}} \) has a term \( \frac{1}{x^{5}} \) that will be undefined when \( x = 0 \) because division by zero is not allowed. Therefore, the domain of the function excludes this value. In interval notation, the domain is \( (-\infty, 0) \cup (0, \infty) \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium