Pregunta
upstudy study bank question image url

Bond prices and maturity dates. Moore Company is about to issue a bond with semiannual coupon payments, an annual coupon rate of \( 9 \% \), and a par value of \( \$ 1,000 \). The yield to maturity. for this bond is \( 10 \% \). a. What is the price of the bond if it matures in \( 5,10,15 \), or 20 years? b. What do you notice about the price of the bond in relationship to the maturity of the bond? \( \$ 961.39 \) (Round to the nearest cent.) What is the price of the bond if it matures in 10 years? \( \$ \) (Round to the nearest cent.)

Ask by Collins Bernard. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The price of the bond that matures in 10 years is \$937.69.

Solución

To determine the price of Moore Company's bond with a **10-year maturity**, we'll follow these steps: ### **Given:** - **Par Value (F):** \$1,000 - **Annual Coupon Rate:** 9% - **Semiannual Coupon Payment (C):** \( \frac{9\% \times \$1,000}{2} = \$45 \) - **Yield to Maturity (YTM):** 10% annually, which translates to 5% semiannually - **Number of Periods (n):** \( 10 \text{ years} \times 2 = 20 \) semiannual periods ### **Bond Pricing Formula:** The price of a bond is the present value of all future coupon payments plus the present value of the par value at maturity. The formula is: \[ \text{Price} = C \times \left[ \frac{1 - (1 + r)^{-n}}{r} \right] + \frac{F}{(1 + r)^n} \] Where: - \( C \) = Semiannual coupon payment (\$45) - \( r \) = Semiannual YTM (5% or 0.05) - \( n \) = Total number of semiannual periods (20) - \( F \) = Par value (\$1,000) ### **Calculations:** 1. **Present Value of Annuity (Coupon Payments):** \[ PV_{\text{coupons}} = 45 \times \left[ \frac{1 - (1.05)^{-20}}{0.05} \right] \] First, calculate \( (1.05)^{-20} \): \[ (1.05)^{20} \approx 2.653297705 \\ (1.05)^{-20} \approx \frac{1}{2.653297705} \approx 0.376889 \] Now, compute the annuity factor: \[ \frac{1 - 0.376889}{0.05} = \frac{0.623111}{0.05} = 12.46222 \] So, \[ PV_{\text{coupons}} = 45 \times 12.46222 \approx \$560.80 \] 2. **Present Value of Par Value:** \[ PV_{\text{par}} = \frac{1,000}{(1.05)^{20}} \approx \frac{1,000}{2.653297705} \approx \$376.89 \] 3. **Total Bond Price:** \[ \text{Price} = PV_{\text{coupons}} + PV_{\text{par}} \approx 560.80 + 376.89 = \$937.69 \] ### **Answer:** **b.** The **price of the bond that matures in 10 years** is **\$937.69**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the price of the bond, we can use the present value formula for bonds. The formula consists of calculating the present value of the future cash flows, which include the semiannual coupon payments and the par value at maturity. Here's how it breaks down for a bond with a $1,000 par value, a coupon rate of \( 9\% \) (which gives \( \$ 45 \) semiannual payments), and a yield to maturity of \( 10\% \) (or \( 5\% \) per period due to semiannual compounding). 1. **For 5 years (10 periods)**: \[ \text{Price} = \sum_{t=1}^{10} \frac{45}{(1 + 0.05)^t} + \frac{1000}{(1 + 0.05)^{10}} \approx \$ 961.39 \] 2. **For 10 years (20 periods)**: \[ \text{Price} = \sum_{t=1}^{20} \frac{45}{(1 + 0.05)^t} + \frac{1000}{(1 + 0.05)^{20}} \approx \$ 857.45 \] 3. **For 15 years (30 periods)**: \[ \text{Price} = \sum_{t=1}^{30} \frac{45}{(1 + 0.05)^t} + \frac{1000}{(1 + 0.05)^{30}} \approx \$ 775.74 \] 4. **For 20 years (40 periods)**: \[ \text{Price} = \sum_{t=1}^{40} \frac{45}{(1 + 0.05)^t} + \frac{1000}{(1 + 0.05)^{40}} \approx \$ 710.68 \] As you can see, the price of the bond decreases as the maturity date extends further into the future. This happens because the present value of the future cash flows becomes smaller when discounted at a higher yield than the coupon rate. Basically, the longer you wait to get your money back, the less it's worth today!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad