Pregunta
upstudy study bank question image url

Determine the End support reactions and End support moments for the fixed beam shown in Fig. 1 belolw - span 5 m ; point load 150 kN acting at 3 m from LEFT end and at 2 m from RIGHT end.

Ask by Lang Cook. in India
Dec 12,2024

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The vertical reaction at the left end is 60 kN upward, at the right end is 90 kN upward. The moment at the left end is 75 kN·m counterclockwise, and at the right end is 375 kN·m counterclockwise.

Solución

To determine the end support reactions and moments for a fixed beam with a point load, we can use static equilibrium equations. ### Given: - Length of the beam, \( L = 5 \, \text{m} \) - Point load, \( P = 150 \, \text{kN} \) - Distance from the left end to the point load, \( a = 3 \, \text{m} \) - Distance from the right end to the point load, \( b = 2 \, \text{m} \) ### Steps to Solve: 1. **Identify the Support Reactions:** For a fixed beam, there are reactions at both ends: - Vertical reaction at the left end, \( R_A \) - Vertical reaction at the right end, \( R_B \) - Moment at the left end, \( M_A \) - Moment at the right end, \( M_B \) 2. **Set Up Equilibrium Equations:** - **Sum of Vertical Forces:** \[ R_A + R_B - P = 0 \] \[ R_A + R_B = 150 \, \text{kN} \quad \text{(1)} \] - **Sum of Moments about Point A:** Taking moments about point A (counterclockwise moments are positive): \[ M_A - P \cdot a + M_B = 0 \] \[ M_A - 150 \cdot 3 + M_B = 0 \] \[ M_A + M_B = 450 \, \text{kN} \cdot \text{m} \quad \text{(2)} \] - **Sum of Moments about Point B:** Taking moments about point B: \[ M_B - P \cdot b - M_A = 0 \] \[ M_B - 150 \cdot 2 - M_A = 0 \] \[ M_B - 300 - M_A = 0 \quad \text{(3)} \] 3. **Solve the Equations:** From equation (3): \[ M_B = M_A + 300 \quad \text{(4)} \] Substitute equation (4) into equation (2): \[ M_A + (M_A + 300) = 450 \] \[ 2M_A + 300 = 450 \] \[ 2M_A = 150 \] \[ M_A = 75 \, \text{kN} \cdot \text{m} \] Now substitute \( M_A \) back into equation (4): \[ M_B = 75 + 300 = 375 \, \text{kN} \cdot \text{m} \] Now substitute \( M_A \) into equation (1) to find \( R_A \) and \( R_B \): \[ R_A + R_B = 150 \] We also need to find \( R_A \) and \( R_B \). We can use the moment about point A to find \( R_B \): \[ R_B = \frac{P \cdot a}{L} = \frac{150 \cdot 3}{5} = 90 \, \text{kN} \] Now substitute \( R_B \) back into equation (1): \[ R_A + 90 = 150 \] \[ R_A = 150 - 90 = 60 \, \text{kN} \] ### Summary of Results: - **Vertical Reaction at A, \( R_A \)**: \( 60 \, \text{kN} \) (upward) - **Vertical Reaction at B, \( R_B \)**: \( 90 \, \text{kN} \) (upward) - **Moment at A, \( M_A \)**: \( 75 \, \text{kN} \cdot \text{m} \) (counterclockwise) - **Moment at B, \( M_B \)**: \( 375 \, \text{kN} \cdot \text{m} \) (counterclockwise) These calculations provide the support reactions and moments for the fixed beam under the given loading conditions.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the end support reactions for the fixed beam, we can use the equilibrium equations. The total load acting on the beam is 150 kN, and it creates moments around the fixed supports. We can sum moments about one end (let's say the left end): 1. The moment due to the point load about the left end is \(M = F \times d\), where \(F = 150 \, \text{kN}\) and \(d = 3 \, \text{m}\). 2. Calculate the counteracting moment produced by the reaction at the right support. Eventually, by solving the equations of equilibrium (sum of vertical forces = 0 and sum of moments = 0), we can find the reactions at supports (RA, RB) and the fixed moments (MA, MB). For the fixed support moments: 1. The moment at the left end can be determined by taking the clockwise moments about that point and setting them equal to the counterclockwise moments due to the applied loads. 2. You end up with equations involving the reactions we calculated previously. This process will lead you to finding both the support reactions and the support moments at each end of the beam effectively. Happy calculating!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad