Pregunta

A rhombus has one vertex at point P(−1, 2) and its diagonals intersect at the origin. If the length of one diagonal is 6 units, what are the possible coordinates for the other three vertices?

Ask by Davison Ramirez. in South Africa
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The other three vertices of the rhombus are \( (1, -2) \), \( \left(\frac{6\sqrt{5}}{5}, \frac{3\sqrt{5}}{5}\right) \), and \( \left(-\frac{6\sqrt{5}}{5}, -\frac{3\sqrt{5}}{5}\right) \).

Solución

To determine the possible coordinates for the vertices of the rhombus, let's follow these steps: 1. **Understanding the Rhombus Properties:** - A rhombus has diagonals that **bisect each other at right angles**. - If one vertex is given and the diagonals intersect at the origin, the opposite vertex is the reflection of the given vertex across the origin. 2. **Given Information:** - One vertex is \( P(-1, 2) \). - The diagonals intersect at the origin \( O(0, 0) \). - The length of one diagonal is 6 units. 3. **Finding the Opposite Vertex:** - Since the diagonals bisect each other at the origin, the opposite vertex \( Q \) of \( P \) is \( Q(1, -2) \). 4. **Determining the Other Diagonal:** - The diagonal \( PQ \) has a length of: \[ \text{Length of } PQ = \sqrt{(1 - (-1))^2 + (-2 - 2)^2} = \sqrt{4 + 16} = 2\sqrt{5} \] Since 6 units is longer than \( 2\sqrt{5} \) (~4.472), the other diagonal must be of length 6 units. 5. **Calculating the Remaining Vertices:** - Let the remaining vertices be \( R(a, b) \) and \( S(-a, -b) \). - The length of diagonal \( RS \) is 6 units: \[ 2\sqrt{a^2 + b^2} = 6 \quad \Rightarrow \quad \sqrt{a^2 + b^2} = 3 \quad \Rightarrow \quad a^2 + b^2 = 9 \] - Since diagonals are perpendicular, the vector for \( RS \) must be perpendicular to the vector \( PQ \) which is \( (2, -4) \). Thus, \( RS \) can have direction vectors proportional to \( (4, 2) \) or \( (-4, -2) \). 6. **Final Coordinates:** - Scaling the direction vectors to have a length of 3 units: \[ R = \left(\frac{6\sqrt{5}}{5}, \frac{3\sqrt{5}}{5}\right) \quad \text{and} \quad S = \left(-\frac{6\sqrt{5}}{5}, -\frac{3\sqrt{5}}{5}\right) \] Therefore, the possible coordinates for the other three vertices of the rhombus are: - **Vertex \( Q \):** \( (1, -2) \) - **Vertices \( R \) and \( S \):** \( \left(\frac{6\sqrt{5}}{5}, \frac{3\sqrt{5}}{5}\right) \) and \( \left(-\frac{6\sqrt{5}}{5}, -\frac{3\sqrt{5}}{5}\right) \) **Summary of Possible Coordinates:** \[ \boxed{ \begin{aligned} & (1,\ -2), \\ & \left(\dfrac{6\,\sqrt{5}}{5},\ \dfrac{3\,\sqrt{5}}{5}\right), \\ & \left(-\dfrac{6\,\sqrt{5}}{5},\ -\dfrac{3\,\sqrt{5}}{5}\right) \end{aligned} } \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the possible coordinates for the other three vertices of the rhombus, we start with the known vertex P(-1, 2) and the given information about the diagonals intersecting at the origin (0, 0). Since the length of one diagonal is 6 units, this diagonal extends from a point (-3, 0) to point (3, 0) on the x-axis, making the midpoint the origin. Now let's find the coordinates of the other three vertices. The two remaining vertices must also lie on the other diagonal that runs perpendicular to the first diagonal and passes through the origin. The length of the other diagonal is unknown, but since it's a rhombus, the vertices will form right angles at the origin. The coordinates of the rhombus opposite vertex can be found by utilizing the midpoint formula and the relations of similar triangles or geometric properties of the rhombus. 1. One of the remaining vertices is at an equal distance from the origin but will be in the opposite direction (straight through the origin from P). Thus, we can create a second vertex at V1(1, -2). 2. The third vertex, V2, is found by using a rotation of the known vertex P around the origin (0, 0). Utilizing the 90-degree rotation transformation, we can find that the third vertex could be V2(2, 1). So, possible coordinates for the other three vertices of this rhombus are: 1. V1(1, -2) 2. V2(2, 1) 3. V3(-2, -1). Feel free to switch around the third vertex using different forms of transformation (like 180-degree rotation, etc.), providing you with even more variations!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad