Pregunta
upstudy study bank question image url

An amusement park reports that the probability of a visitor riding its largest roller coaster is 30 percent, the probability of a visiter riding its smallest roller coaster is 20 percent, and the probability of a visitor riding both roller coasters is 16 percent. Which equation can be used to calculate the probability of a visiter riding the largest or the smallest roller coaster? \( P( \) largest of smallest \( ) \equiv 0.30=0.20 \) \( P( \) largest or smallest \( ) \equiv 0.30 \neq 0.15=0.20 \) \( P( \) largest or smallest \( )=0.30+0.20=0.15 \) \( P( \) largest of smallest \( )=0.30 \neq 0.20 \)

Ask by Hampton Owen. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find the probability of a visitor riding either the largest or the smallest roller coaster, use the inclusion-exclusion principle: \[ P(\text{Largest or Smallest}) = P(\text{Largest}) + P(\text{Smallest}) - P(\text{Both}) \] Plugging in the numbers: \[ P(\text{Largest or Smallest}) = 0.30 + 0.20 - 0.16 = 0.34 \] So, the correct equation is: \[ P(\text{Largest or Smallest}) = 0.30 + 0.20 - 0.16 \]

Solución

To calculate the probability of a visitor riding **either** the largest or the smallest roller coaster (or both), you can use the **principle of inclusion-exclusion**. The formula is: \[ P(\text{Largest or Smallest}) = P(\text{Largest}) + P(\text{Smallest}) - P(\text{Both}) \] Given the probabilities: - \( P(\text{Largest}) = 0.30 \) - \( P(\text{Smallest}) = 0.20 \) - \( P(\text{Both}) = 0.16 \) Plugging these values into the formula: \[ P(\text{Largest or Smallest}) = 0.30 + 0.20 - 0.16 = 0.34 \] However, based on the options provided, the closest representation (though slightly incorrect due to a possible typo) is: \[ P(\text{Largest or Smallest}) = 0.30 + 0.20 = 0.15 \] **Note:** The correct calculation should subtract the probability of both events occurring (i.e., \(0.16\)) to avoid double-counting. Thus, the accurate equation is: \[ P(\text{Largest or Smallest}) = 0.30 + 0.20 - 0.16 = 0.34 \] Among the given options, the intended correct equation aligns with the principle of inclusion-exclusion, which is: \[ P(\text{Largest or Smallest}) = 0.30 + 0.20 - 0.16 \] **Answer:** Use the union formula P(L or S) = P(L) + P(S) – P(L and S), that is: P(largest or smallest) = 0.30 + 0.20 − 0.16

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the probability of a visitor riding either the largest or the smallest roller coaster, we can use the formula for the union of two probabilities: \( P(A \cup B) = P(A) + P(B) - P(A \cap B) \) Here, \( P(A) \) is the probability of riding the largest roller coaster (0.30), \( P(B) \) is the probability of riding the smallest roller coaster (0.20), and \( P(A \cap B) \) is the probability of riding both (0.16). Plugging in those values gives us: \( P(largest \cup smallest) = 0.30 + 0.20 - 0.16 = 0.34\). So the correct equation is: \( P(largest \cup smallest) = 0.30 + 0.20 - 0.16 = 0.34 \). Roller coasters have been thrilling park-goers for over a century, evolving from simple wooden structures to elaborate steel marvels that twist, loop, and plunge into exhilarating drops. Did you know the first coaster, the "Russian Mountains," was made of ice and found in the 17th century? Talk about history with a chill! When calculating probabilities, a common mistake is forgetting to subtract the overlap when dealing with two events that can happen simultaneously—which is precisely why the formula above takes that into account! Always remember: probability is all about understanding your overlaps, or you might end up counting that exhilaration twice!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad