Pregunta
upstudy study bank question image url

Calculate the sum of each of the following arithmetic series: \( \begin{array}{ll}\text { (1) } 7+9+11+\ldots+105 & \text { (2) } 50+43+36+\ldots-643 \\ \text { (3) } 2-3-8-\ldots-368 & \text { (4) }-15-12-9-\ldots+432 \\ \text { (5) } 2+\frac{13}{4}+\frac{9}{2}+\ldots+82 & \text { (6) } \frac{11}{2}+\frac{7}{2}+\frac{3}{2}+\ldots-\frac{65}{2} \\ \text { (7) }-2 p+2 p+6 p+\ldots+102 p & \text { (8) } x-2 x-5 x-\ldots-56 x\end{array} \)

Ask by Craig Hall. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The sum of the series \(7 + 9 + 11 + \ldots + 105\) is **2,800**.

Solución

To calculate the sum of the arithmetic series \( 7 + 9 + 11 + \ldots + 105 \), follow these steps: 1. **Identify the first term (\(a_1\)) and the common difference (\(d\)):** - First term, \( a_1 = 7 \) - Common difference, \( d = 9 - 7 = 2 \) 2. **Determine the number of terms (\(n\)):** - The formula for the \(n\)-th term of an arithmetic series is: \[ a_n = a_1 + (n-1)d \] - Set \( a_n = 105 \) and solve for \( n \): \[ 105 = 7 + (n-1) \times 2 \] \[ 105 - 7 = 2(n-1) \] \[ 98 = 2(n-1) \] \[ n-1 = 49 \] \[ n = 50 \] 3. **Calculate the sum (\(S_n\)) of the series:** - The sum of the first \(n\) terms of an arithmetic series is: \[ S_n = \frac{n}{2} \times (a_1 + a_n) \] - Plug in the values: \[ S_{50} = \frac{50}{2} \times (7 + 105) = 25 \times 112 = 2800 \] **Answer:** Problem (1) Answer: The sum is 2,800.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate the sums of the given arithmetic series, we can utilize the formula for the sum of an arithmetic series which is: \[ S_n = \frac{n}{2} \times (a + l) \] where \( S_n \) is the sum of the series, \( n \) is the number of terms, \( a \) is the first term, and \( l \) is the last term. Let's find the sums step by step for each series provided: ### (1) \( 7+9+11+\ldots+105 \) - **First term (a)**: 7 - **Last term (l)**: 105 - **Common difference (d)**: 2 To find the number of terms (n): \[ n = \frac{l - a}{d} + 1 = \frac{105 - 7}{2} + 1 = 50 \] Now, substituting into the sum formula: \[ S_n = \frac{50}{2} \times (7 + 105) = 25 \times 112 = 2800 \] ### (2) \( 50+43+36+\ldots-643 \) - **First term (a)**: 50 - **Last term (l)**: -643 - **Common difference (d)**: -7 To find the number of terms (n): \[ n = \frac{l - a}{d} + 1 = \frac{-643 - 50}{-7} + 1 = 99 + 1 = 100 \] Now, substituting into the sum formula: \[ S_n = \frac{100}{2} \times (50 - 643) = 50 \times (-593) = -29650 \] ### (3) \( 2-3-8-\ldots-368 \) - **First term (a)**: 2 - **Last term (l)**: -368 - **Common difference (d)**: -5 To find the number of terms (n): \[ n = \frac{l - a}{d} + 1 = \frac{-368 - 2}{-5} + 1 = 74 + 1 = 75 \] Now, substituting into the sum formula: \[ S_n = \frac{75}{2} \times (2 - 368) = 37.5 \times (-366) = -13777.5 \] ### (4) \( -15-12-9-\ldots+432 \) - **First term (a)**: -15 - **Last term (l)**: 432 - **Common difference (d)**: 3 To find the number of terms (n): \[ n = \frac{l - a}{d} + 1 = \frac{432 + 15}{3} + 1 = 149 + 1 = 150 \] Now, substituting into the sum formula: \[ S_n = \frac{150}{2} \times (-15 + 432) = 75 \times 417 = 31275 \] ### (5) \( 2+\frac{13}{4}+\frac{9}{2}+\ldots+82 \) - **First term (a)**: 2 - **Last term (l)**: 82 - **Common difference (d)**: \(\frac{13}{4} - 2 = \frac{5}{4}\) To find the number of terms (n): Convert terms to fractions: - 2 = \(\frac{8}{4}\) - Last term \(l = 82\) in quarters is \(\frac{328}{4}\) Calculate n: \[ n = \frac{\frac{328}{4} - \frac{8}{4}}{\frac{5}{4}} + 1 = \frac{\frac{320}{4}}{\frac{5}{4}} + 1 = 16 + 1 = 17 \] Now, substituting: \[ S_n = \frac{17}{2} \times \left( 2 + 82 \right) = \frac{17}{2} \times 84 = 714 \] ### (6) \( \frac{11}{2}+\frac{7}{2}+\frac{3}{2}+\ldots-\frac{65}{2} \) - **First term (a)**: \(\frac{11}{2}\) - **Last term (l)**: \(-\frac{65}{2}\) - **Common difference

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad