Calculate the sum of each of the following arithmetic series: \( \begin{array}{ll}\text { (1) } 7+9+11+\ldots+105 & \text { (2) } 50+43+36+\ldots-643 \\ \text { (3) } 2-3-8-\ldots-368 & \text { (4) }-15-12-9-\ldots+432 \\ \text { (5) } 2+\frac{13}{4}+\frac{9}{2}+\ldots+82 & \text { (6) } \frac{11}{2}+\frac{7}{2}+\frac{3}{2}+\ldots-\frac{65}{2} \\ \text { (7) }-2 p+2 p+6 p+\ldots+102 p & \text { (8) } x-2 x-5 x-\ldots-56 x\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To calculate the sums of the given arithmetic series, we can utilize the formula for the sum of an arithmetic series which is: \[ S_n = \frac{n}{2} \times (a + l) \] where \( S_n \) is the sum of the series, \( n \) is the number of terms, \( a \) is the first term, and \( l \) is the last term. Let's find the sums step by step for each series provided: ### (1) \( 7+9+11+\ldots+105 \) - **First term (a)**: 7 - **Last term (l)**: 105 - **Common difference (d)**: 2 To find the number of terms (n): \[ n = \frac{l - a}{d} + 1 = \frac{105 - 7}{2} + 1 = 50 \] Now, substituting into the sum formula: \[ S_n = \frac{50}{2} \times (7 + 105) = 25 \times 112 = 2800 \] ### (2) \( 50+43+36+\ldots-643 \) - **First term (a)**: 50 - **Last term (l)**: -643 - **Common difference (d)**: -7 To find the number of terms (n): \[ n = \frac{l - a}{d} + 1 = \frac{-643 - 50}{-7} + 1 = 99 + 1 = 100 \] Now, substituting into the sum formula: \[ S_n = \frac{100}{2} \times (50 - 643) = 50 \times (-593) = -29650 \] ### (3) \( 2-3-8-\ldots-368 \) - **First term (a)**: 2 - **Last term (l)**: -368 - **Common difference (d)**: -5 To find the number of terms (n): \[ n = \frac{l - a}{d} + 1 = \frac{-368 - 2}{-5} + 1 = 74 + 1 = 75 \] Now, substituting into the sum formula: \[ S_n = \frac{75}{2} \times (2 - 368) = 37.5 \times (-366) = -13777.5 \] ### (4) \( -15-12-9-\ldots+432 \) - **First term (a)**: -15 - **Last term (l)**: 432 - **Common difference (d)**: 3 To find the number of terms (n): \[ n = \frac{l - a}{d} + 1 = \frac{432 + 15}{3} + 1 = 149 + 1 = 150 \] Now, substituting into the sum formula: \[ S_n = \frac{150}{2} \times (-15 + 432) = 75 \times 417 = 31275 \] ### (5) \( 2+\frac{13}{4}+\frac{9}{2}+\ldots+82 \) - **First term (a)**: 2 - **Last term (l)**: 82 - **Common difference (d)**: \(\frac{13}{4} - 2 = \frac{5}{4}\) To find the number of terms (n): Convert terms to fractions: - 2 = \(\frac{8}{4}\) - Last term \(l = 82\) in quarters is \(\frac{328}{4}\) Calculate n: \[ n = \frac{\frac{328}{4} - \frac{8}{4}}{\frac{5}{4}} + 1 = \frac{\frac{320}{4}}{\frac{5}{4}} + 1 = 16 + 1 = 17 \] Now, substituting: \[ S_n = \frac{17}{2} \times \left( 2 + 82 \right) = \frac{17}{2} \times 84 = 714 \] ### (6) \( \frac{11}{2}+\frac{7}{2}+\frac{3}{2}+\ldots-\frac{65}{2} \) - **First term (a)**: \(\frac{11}{2}\) - **Last term (l)**: \(-\frac{65}{2}\) - **Common difference