Pregunta
upstudy study bank question image url

Which of the following sets of numbers could represent the three sides of a triangle? Answer \( \begin{array}{ll}\{6,20,26\} & \{15,17,32\} \\ \{13,24,35\} & \{5,18,25\}\end{array} \)

Ask by Ford Davies. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Only the set {13, 24, 35} can represent the three sides of a triangle.

Solución

To determine which sets of numbers can represent the sides of a triangle, we use the **Triangle Inequality Theorem**. This theorem states that for any three sides \( a \), \( b \), and \( c \) of a triangle (where \( c \) is the longest side): \[ a + b > c \] Let's evaluate each set: 1. **\(\{6, 20, 26\}\)** - Sort the sides: 6, 20, 26 - Check: \( 6 + 20 = 26 \) - Since \( 6 + 20 \) is **not greater** than 26, this **cannot** form a triangle. 2. **\(\{15, 17, 32\}\)** - Sort the sides: 15, 17, 32 - Check: \( 15 + 17 = 32 \) - Since \( 15 + 17 \) is **not greater** than 32, this **cannot** form a triangle. 3. **\(\{13, 24, 35\}\)** - Sort the sides: 13, 24, 35 - Check: \( 13 + 24 = 37 \) - Since \( 13 + 24 > 35 \), this **can** form a triangle. 4. **\(\{5, 18, 25\}\)** - Sort the sides: 5, 18, 25 - Check: \( 5 + 18 = 23 \) - Since \( 5 + 18 \) is **less than** 25, this **cannot** form a triangle. **Conclusion:** Only the set \(\{13, 24, 35\}\) satisfies the Triangle Inequality Theorem and can represent the sides of a triangle. **Answer:** Only the set {13, 24, 35} can represent the three sides of a triangle.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To check if a set of numbers can represent the sides of a triangle, you can use the triangle inequality theorem. This states that for any triangle with sides \(a\), \(b\), and \(c\), the following must be true: 1. \(a + b > c\) 2. \(a + c > b\) 3. \(b + c > a\) Using this theorem, you can evaluate the given sets. After applying these rules, you'll find that \(\{6, 20, 26\}\) does satisfy the triangle inequality (6 + 20 > 26 is false, so it's not a triangle). However, \(\{15, 17, 32\}\) does not (15 + 17 is not greater than 32), while \(\{13, 24, 35\}\) and \(\{5, 18, 25\}\) do represent valid triangles. Exploring the fascinating world of triangles, did you know they are the simplest polygon, possessing only three sides and three angles? This simplicity doesn’t just help in construction and architecture, but also in fields like art and computer graphics, proving that sometimes the simplest shapes can create the most complex designs! Triangles have this unique relationship with math known as the Pythagorean theorem, which only applies to right triangles. It can unlock many mysteries in real life! For instance, if you're trying to build a ramp or a roof, understanding how to calculate the lengths of the sides will ensure it's structurally sound and visually appealing! So grab those tools and enjoy crafting!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad