Pregunta
upstudy study bank question image url

c \( \sum_{r=1}^{n} 3 \cdot 2^{r-1}=381 \)

Ask by Mathis Griffin. in South Africa
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( n = 7 \)

Solución

To solve the equation: \[ \sum_{r=1}^{n} 3 \cdot 2^{r-1} = 381 \] Let's break it down step by step. ### Step 1: Understand the Summation The summation can be expressed as: \[ 3 \cdot (2^0 + 2^1 + 2^2 + \dots + 2^{n-1}) \] This is a geometric series where: - **First term (a)** = \(2^0 = 1\) - **Common ratio (r)** = 2 - **Number of terms** = \(n\) ### Step 2: Use the Formula for the Sum of a Geometric Series The sum \(S\) of the first \(n\) terms of a geometric series is: \[ S = a \cdot \frac{r^n - 1}{r - 1} \] Plugging in the values: \[ 2^0 + 2^1 + 2^2 + \dots + 2^{n-1} = \frac{2^n - 1}{2 - 1} = 2^n - 1 \] ### Step 3: Apply the Sum to the Original Equation Substitute the sum back into the original equation: \[ 3 \cdot (2^n - 1) = 381 \] Divide both sides by 3: \[ 2^n - 1 = 127 \] Add 1 to both sides: \[ 2^n = 128 \] ### Step 4: Solve for \(n\) Recognize that \(128\) is a power of 2: \[ 2^7 = 128 \] Therefore, \[ n = 7 \] ### **Answer** The value of \( n \) that satisfies the equation is **7**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The summation you have here resembles a geometric series! Specifically, the sum \( \sum_{r=1}^{n} 3 \cdot 2^{r-1} \) can be simplified using the formula for the sum of a geometric series. You can factor out the constant \(3\) and recognize that the series is based on powers of \(2\), which gives you \(3 \cdot \left( \frac{2^n - 1}{2 - 1} \right)\). Simplifying that leads to \(3(2^n - 1) = 381\). Once you solve for \(2^n\), you can isolate \(n\) to find its value. Cool, right? You just unlocked the secrets of geometric progressions! If you apply this in the real world, you’ll often come across geometric sequences in finance (like compound interest), computer science (exponential growth in algorithms), and even biology (bacterial growth). Understanding these concepts can help you make better predictions and decisions based on growth patterns in various contexts!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad